Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: 257.80 +/- 15.76
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f949db1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f949db280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f949db310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f949db3a0>", "_build": "<function ActorCriticPolicy._build at 0x7f8f949db430>", "forward": "<function ActorCriticPolicy.forward at 0x7f8f949db4c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f949db550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8f949db5e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f949db670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f949db700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f949db790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8f949da210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670296074479873540, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPG4r0o27c9zUYAPoVDkL5TDmM97aVlPQAAAAAAAAAAs6MZvZi7Zz8qE5I8lKW+vinXOb3lttQ9AAAAAAAAAADmtQC+/7lLP0bPGTyW24u+beXOvZ0GsrwAAAAAAAAAAF1ad76D2S8/hPxKPt+HeL4fp8O9KkH+PQAAAAAAAAAAzUwruZzrCryQc8Y7gjwNPN+5YL2T5Pk8AACAPwAAgD+A4yW9rqGTuk0pTTreWiO2tkyQuij1bLkAAIA/AACAP6YT4D2j458++E/sOmrcab6yOm09rgmUvAAAAAAAAAAAgGqXPkOjMj9G58u9AFicvoKoCj6Qfi6+AAAAAAAAAAAAfC49voqfP+Y3LD6GN+C+JlyBPddCSD0AAAAAAAAAANqzG74/lqM/GqkXvxXyqL78VGC+yg3BvgAAAAAAAAAAoCylPrS6TD8pEsg8ngDrvjWVqz7Nmhq+AAAAAAAAAABa+os99rxqunpR9LtCwjGzfBh+uaYkTDMAAIA/AAAAAABcBTwkk5A/AzWuPC930L7k3mo81C27PQAAAAAAAAAAADwSvjhWlT9iNCi/VZQCv76pyr29eXa+AAAAAAAAAACAKZw99vQpuqFMlDpvzQc1734SOhLfqLkAAIA/AAAAAGbFYT1USsM+Zimpu4tFqr61ucm7db2mvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITKq2myDrckCUhpRSlIwBbJRNCwGMAXSUR0CS1qpeeFtbdX2UKGgGaAloD0MImODUB5JTbkCUhpRSlGgVTQMBaBZHQJLWxMVUMod1fZQoaAZoCWgPQwhQVaGBWINwQJSGlFKUaBVNTAFoFkdAktcl0DEFXHV9lChoBmgJaA9DCBWQ9j/APXJAlIaUUpRoFU0MAWgWR0CS18PAO8TSdX2UKGgGaAloD0MI/Bu0V19JcECUhpRSlGgVTVYBaBZHQJLYQ3CKrJd1fZQoaAZoCWgPQwg7qwX2mMFwQJSGlFKUaBVNgwFoFkdAktniZWq95HV9lChoBmgJaA9DCCNozCTqDm5AlIaUUpRoFU0mAWgWR0CS2lVbiZOSdX2UKGgGaAloD0MI2gBsQAR6c0CUhpRSlGgVTQABaBZHQJLadQXQ+ll1fZQoaAZoCWgPQwhSZK2hFA1yQJSGlFKUaBVNbAFoFkdAktq1uzhP03V9lChoBmgJaA9DCPz7jAtHyHBAlIaUUpRoFU1pAWgWR0CS3OfCAMDwdX2UKGgGaAloD0MIBcWPMfe0bkCUhpRSlGgVTRkBaBZHQJLdr5i3G4t1fZQoaAZoCWgPQwg90XXhR6ZyQJSGlFKUaBVL/GgWR0CS3m09hZyNdX2UKGgGaAloD0MIcxO1NHcscECUhpRSlGgVTUQBaBZHQJLeytEG7jF1fZQoaAZoCWgPQwhIbeLkvuxxQJSGlFKUaBVNHQFoFkdAkt9YW56MSHV9lChoBmgJaA9DCINr7uh/UnBAlIaUUpRoFU0cAWgWR0CS34IcR15jdX2UKGgGaAloD0MIq5hKP+EickCUhpRSlGgVTSQBaBZHQJLfgwK0D2d1fZQoaAZoCWgPQwiGH5xPHc5wQJSGlFKUaBVNbgFoFkdAkuBwIQe3hHV9lChoBmgJaA9DCKTFGcMckXFAlIaUUpRoFU0SAWgWR0CS4IvM8ox6dX2UKGgGaAloD0MIBmSvd38xckCUhpRSlGgVTTYBaBZHQJLg2oBJZnt1fZQoaAZoCWgPQwhz843oXvpwQJSGlFKUaBVNewFoFkdAkuILxy4nW3V9lChoBmgJaA9DCFKdDmQ9R3JAlIaUUpRoFUv4aBZHQJLitpmEoOR1fZQoaAZoCWgPQwijWkQUU8ZxQJSGlFKUaBVNJAFoFkdAkuMsY/FBIHV9lChoBmgJaA9DCJ3zUxwHG3FAlIaUUpRoFU0hAWgWR0CS455HVf/ndX2UKGgGaAloD0MIGcdI9ojJbkCUhpRSlGgVTS8BaBZHQJLj6HrQgLZ1fZQoaAZoCWgPQwiaeXJNgUZvQJSGlFKUaBVNJQFoFkdAkuYulXRw63V9lChoBmgJaA9DCF2I1R/honJAlIaUUpRoFUvyaBZHQJLm2FZgXuV1fZQoaAZoCWgPQwhNEHUfgBZsQJSGlFKUaBVL/GgWR0CS5wlfJFLGdX2UKGgGaAloD0MI/wOsVbsgcUCUhpRSlGgVTSIBaBZHQJLnij59E1F1fZQoaAZoCWgPQwg6kWCqmYNuQJSGlFKUaBVNHQFoFkdAkuerux8lX3V9lChoBmgJaA9DCLIS86zkmHJAlIaUUpRoFU1dAWgWR0CS6NlsguAadX2UKGgGaAloD0MIKsWOxmFdckCUhpRSlGgVTSUBaBZHQJLpmiCaqjt1fZQoaAZoCWgPQwhU4jrG1ZpwQJSGlFKUaBVNRQFoFkdAkum35WRzR3V9lChoBmgJaA9DCKq3BrZKtnJAlIaUUpRoFU0pAWgWR0CS6kHbAUL2dX2UKGgGaAloD0MI4Niz5zKrcECUhpRSlGgVTUkBaBZHQJLq450bLlp1fZQoaAZoCWgPQwiDonkAC3tyQJSGlFKUaBVNTwJoFkdAkusWpqASWnV9lChoBmgJaA9DCA7cgTpl12tAlIaUUpRoFU01AWgWR0CS69ke6qbSdX2UKGgGaAloD0MIzSIUWwFFcECUhpRSlGgVTRQBaBZHQJLs1If8uSR1fZQoaAZoCWgPQwhM4UGz68hvQJSGlFKUaBVNTgFoFkdAku1R8IAwPHV9lChoBmgJaA9DCGYucHmsYnNAlIaUUpRoFU1HAWgWR0CS7iMBIWgwdX2UKGgGaAloD0MIXwfOGdE3cUCUhpRSlGgVTTEBaBZHQJLwNISUTtd1fZQoaAZoCWgPQwjK4Ch59bVtQJSGlFKUaBVNIAFoFkdAkvBBJmNBGHV9lChoBmgJaA9DCAb1LXO66kdAlIaUUpRoFUvXaBZHQJLwecOLBKt1fZQoaAZoCWgPQwjVBFH3QSVwQJSGlFKUaBVL9WgWR0CS8MdTYNAkdX2UKGgGaAloD0MIh6jCnyEwcUCUhpRSlGgVTTcBaBZHQJLxLcafjCJ1fZQoaAZoCWgPQwi0y7c+bLFyQJSGlFKUaBVNQwFoFkdAkvIPWMCLdnV9lChoBmgJaA9DCDp0et4N6XJAlIaUUpRoFU0HAWgWR0CTBxseXAuadX2UKGgGaAloD0MISFM9mX8HUkCUhpRSlGgVS79oFkdAkwcw1rIo3XV9lChoBmgJaA9DCPGD86mjHXFAlIaUUpRoFU0mAWgWR0CTBztlqagFdX2UKGgGaAloD0MIE7U0twLscECUhpRSlGgVTVIBaBZHQJMHRr1uivh1fZQoaAZoCWgPQwj8471qpdBwQJSGlFKUaBVNSAFoFkdAkwd5EpiI+HV9lChoBmgJaA9DCAaBlUPLFHFAlIaUUpRoFU2oAWgWR0CTCCIatLcsdX2UKGgGaAloD0MIXk2eshpEcECUhpRSlGgVTUsBaBZHQJMINvVEuxt1fZQoaAZoCWgPQwhXmL7XULtwQJSGlFKUaBVNKQFoFkdAkwlHDvVmSXV9lChoBmgJaA9DCPZBlgWT0HBAlIaUUpRoFU0tAWgWR0CTCeEjxCpndX2UKGgGaAloD0MI9z/AWrVabECUhpRSlGgVTQoBaBZHQJMLc50bLlp1fZQoaAZoCWgPQwg9fJkoArFwQJSGlFKUaBVNIQFoFkdAkwx5O8Cgb3V9lChoBmgJaA9DCAmnBS96xm5AlIaUUpRoFU2AAWgWR0CTD+G/etSydX2UKGgGaAloD0MI9gzhmOUIcUCUhpRSlGgVS/VoFkdAkxC8y31BdHV9lChoBmgJaA9DCIEFMGUgpnBAlIaUUpRoFU0YAWgWR0CTEQC1Z1V6dX2UKGgGaAloD0MIPGu3XejqckCUhpRSlGgVTWQBaBZHQJMRAXm/3391fZQoaAZoCWgPQwhE/S5sTaVyQJSGlFKUaBVNEgFoFkdAkxEV+iJwbXV9lChoBmgJaA9DCFExzt9EJnJAlIaUUpRoFU0ZAWgWR0CTERdxQzk7dX2UKGgGaAloD0MI6USCqea5bECUhpRSlGgVTSoBaBZHQJMRkQCjk+51fZQoaAZoCWgPQwivCP63ku5vQJSGlFKUaBVNKwFoFkdAkxG8L0BfbHV9lChoBmgJaA9DCF6CUx/IbXNAlIaUUpRoFU2aAWgWR0CTEeo3aSLZdX2UKGgGaAloD0MIcM0d/S9ucUCUhpRSlGgVTRABaBZHQJMSwuPFNtZ1fZQoaAZoCWgPQwhXW7G/bCxvQJSGlFKUaBVNNAFoFkdAkxLVGPPszHV9lChoBmgJaA9DCHdoWIw6uHJAlIaUUpRoFU3LAWgWR0CTEvOTaCcxdX2UKGgGaAloD0MItI6qJsilcECUhpRSlGgVTQ8BaBZHQJMUo4ku6Et1fZQoaAZoCWgPQwhhcTjz66dwQJSGlFKUaBVNSQFoFkdAkxTkW/JvHnV9lChoBmgJaA9DCLWHvVCA2XFAlIaUUpRoFUv9aBZHQJMU/xpcoph1fZQoaAZoCWgPQwj2fThIiB5CQJSGlFKUaBVN6ANoFkdAkxZQAp8WsXV9lChoBmgJaA9DCEnajT7mym9AlIaUUpRoFU0cAWgWR0CTGGWAPNFCdX2UKGgGaAloD0MI/DTuzS/McUCUhpRSlGgVTQwBaBZHQJMYzbM5fdB1fZQoaAZoCWgPQwilT6voDyxxQJSGlFKUaBVNDgFoFkdAkxjhEF4cFXV9lChoBmgJaA9DCB3lYDbBA3BAlIaUUpRoFU0PAWgWR0CTGcUWl/H6dX2UKGgGaAloD0MI/tMNFDjtcUCUhpRSlGgVTTwBaBZHQJMaKNWEK3N1fZQoaAZoCWgPQwin6EguvxRzQJSGlFKUaBVNQQFoFkdAkxqJX+2mYXV9lChoBmgJaA9DCMXnTrC/RXFAlIaUUpRoFU0MAWgWR0CTGsf1pTMrdX2UKGgGaAloD0MIEXNJ1XY3cECUhpRSlGgVTQ4BaBZHQJMaxoIv8Il1fZQoaAZoCWgPQwiRe7q6o95wQJSGlFKUaBVNPQFoFkdAkxr47A+IM3V9lChoBmgJaA9DCHjQ7Lq3zG9AlIaUUpRoFU1IAWgWR0CTG2uMMqjKdX2UKGgGaAloD0MIzLT9KytycECUhpRSlGgVTTYBaBZHQJMcDRnezld1fZQoaAZoCWgPQwgPKnEd4xFxQJSGlFKUaBVNCgFoFkdAkxzX4bjtHHV9lChoBmgJaA9DCGLaN/fXo21AlIaUUpRoFU0OAWgWR0CTHNjx0+1SdX2UKGgGaAloD0MIxk54Cc4qb0CUhpRSlGgVTS8BaBZHQJMddNlAeJZ1fZQoaAZoCWgPQwiYvtcQnGhyQJSGlFKUaBVNugFoFkdAkx3LnX/YJ3V9lChoBmgJaA9DCH/C2a1lB21AlIaUUpRoFU0YAWgWR0CTHlT2FnIydX2UKGgGaAloD0MIK4VALnEiQkCUhpRSlGgVS/ZoFkdAkx9Npyp71XV9lChoBmgJaA9DCKq53GCoBXFAlIaUUpRoFUvwaBZHQJMgQYuTRpl1fZQoaAZoCWgPQwilZaTek9RwQJSGlFKUaBVNFQFoFkdAkyB+c+aBqnV9lChoBmgJaA9DCFbT9UQX9nFAlIaUUpRoFU1JAWgWR0CTIg34Kx9odX2UKGgGaAloD0MIcM6I0l4Uc0CUhpRSlGgVTRwBaBZHQJMiLrhR64V1fZQoaAZoCWgPQwj/ykqTUkNvQJSGlFKUaBVNHAFoFkdAkyJkAHVwxXV9lChoBmgJaA9DCFXf+UUJ8m1AlIaUUpRoFU0nAWgWR0CTIrd5prULdX2UKGgGaAloD0MIqwX2mIjTcECUhpRSlGgVTRcBaBZHQJMi7mvGIbh1fZQoaAZoCWgPQwg25Qrvsr1yQJSGlFKUaBVNVgFoFkdAkyORgRbr1XV9lChoBmgJaA9DCFPovMauo3BAlIaUUpRoFU1OAWgWR0CTI/7ROUMYdX2UKGgGaAloD0MIv/IgPYWCcECUhpRSlGgVTSUBaBZHQJMj/9itq591fZQoaAZoCWgPQwg75dGNsOttQJSGlFKUaBVNCgFoFkdAkyQRFiKBNHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9b7dcd95296e6b35ff15e23f55f8a153a1c2c732473fd9634d6ce8fc03c1ea20
|
| 3 |
+
size 147142
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8f949db1f0>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8f949db280>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8f949db310>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8f949db3a0>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8f949db430>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8f949db4c0>",
|
| 13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8f949db550>",
|
| 14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8f949db5e0>",
|
| 15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8f949db670>",
|
| 16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8f949db700>",
|
| 17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8f949db790>",
|
| 18 |
+
"__abstractmethods__": "frozenset()",
|
| 19 |
+
"_abc_impl": "<_abc_data object at 0x7f8f949da210>"
|
| 20 |
+
},
|
| 21 |
+
"verbose": 1,
|
| 22 |
+
"policy_kwargs": {},
|
| 23 |
+
"observation_space": {
|
| 24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
| 25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
| 26 |
+
"dtype": "float32",
|
| 27 |
+
"_shape": [
|
| 28 |
+
8
|
| 29 |
+
],
|
| 30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
| 31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
| 32 |
+
"bounded_below": "[False False False False False False False False]",
|
| 33 |
+
"bounded_above": "[False False False False False False False False]",
|
| 34 |
+
"_np_random": null
|
| 35 |
+
},
|
| 36 |
+
"action_space": {
|
| 37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
| 38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
| 39 |
+
"n": 4,
|
| 40 |
+
"_shape": [],
|
| 41 |
+
"dtype": "int64",
|
| 42 |
+
"_np_random": null
|
| 43 |
+
},
|
| 44 |
+
"n_envs": 16,
|
| 45 |
+
"num_timesteps": 1015808,
|
| 46 |
+
"_total_timesteps": 1000000,
|
| 47 |
+
"_num_timesteps_at_start": 0,
|
| 48 |
+
"seed": null,
|
| 49 |
+
"action_noise": null,
|
| 50 |
+
"start_time": 1670296074479873540,
|
| 51 |
+
"learning_rate": 0.0003,
|
| 52 |
+
"tensorboard_log": null,
|
| 53 |
+
"lr_schedule": {
|
| 54 |
+
":type:": "<class 'function'>",
|
| 55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 56 |
+
},
|
| 57 |
+
"_last_obs": {
|
| 58 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHPG4r0o27c9zUYAPoVDkL5TDmM97aVlPQAAAAAAAAAAs6MZvZi7Zz8qE5I8lKW+vinXOb3lttQ9AAAAAAAAAADmtQC+/7lLP0bPGTyW24u+beXOvZ0GsrwAAAAAAAAAAF1ad76D2S8/hPxKPt+HeL4fp8O9KkH+PQAAAAAAAAAAzUwruZzrCryQc8Y7gjwNPN+5YL2T5Pk8AACAPwAAgD+A4yW9rqGTuk0pTTreWiO2tkyQuij1bLkAAIA/AACAP6YT4D2j458++E/sOmrcab6yOm09rgmUvAAAAAAAAAAAgGqXPkOjMj9G58u9AFicvoKoCj6Qfi6+AAAAAAAAAAAAfC49voqfP+Y3LD6GN+C+JlyBPddCSD0AAAAAAAAAANqzG74/lqM/GqkXvxXyqL78VGC+yg3BvgAAAAAAAAAAoCylPrS6TD8pEsg8ngDrvjWVqz7Nmhq+AAAAAAAAAABa+os99rxqunpR9LtCwjGzfBh+uaYkTDMAAIA/AAAAAABcBTwkk5A/AzWuPC930L7k3mo81C27PQAAAAAAAAAAADwSvjhWlT9iNCi/VZQCv76pyr29eXa+AAAAAAAAAACAKZw99vQpuqFMlDpvzQc1734SOhLfqLkAAIA/AAAAAGbFYT1USsM+Zimpu4tFqr61ucm7db2mvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
| 60 |
+
},
|
| 61 |
+
"_last_episode_starts": {
|
| 62 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
| 64 |
+
},
|
| 65 |
+
"_last_original_obs": null,
|
| 66 |
+
"_episode_num": 0,
|
| 67 |
+
"use_sde": false,
|
| 68 |
+
"sde_sample_freq": -1,
|
| 69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
| 70 |
+
"ep_info_buffer": {
|
| 71 |
+
":type:": "<class 'collections.deque'>",
|
| 72 |
+
":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITKq2myDrckCUhpRSlIwBbJRNCwGMAXSUR0CS1qpeeFtbdX2UKGgGaAloD0MImODUB5JTbkCUhpRSlGgVTQMBaBZHQJLWxMVUMod1fZQoaAZoCWgPQwhQVaGBWINwQJSGlFKUaBVNTAFoFkdAktcl0DEFXHV9lChoBmgJaA9DCBWQ9j/APXJAlIaUUpRoFU0MAWgWR0CS18PAO8TSdX2UKGgGaAloD0MI/Bu0V19JcECUhpRSlGgVTVYBaBZHQJLYQ3CKrJd1fZQoaAZoCWgPQwg7qwX2mMFwQJSGlFKUaBVNgwFoFkdAktniZWq95HV9lChoBmgJaA9DCCNozCTqDm5AlIaUUpRoFU0mAWgWR0CS2lVbiZOSdX2UKGgGaAloD0MI2gBsQAR6c0CUhpRSlGgVTQABaBZHQJLadQXQ+ll1fZQoaAZoCWgPQwhSZK2hFA1yQJSGlFKUaBVNbAFoFkdAktq1uzhP03V9lChoBmgJaA9DCPz7jAtHyHBAlIaUUpRoFU1pAWgWR0CS3OfCAMDwdX2UKGgGaAloD0MIBcWPMfe0bkCUhpRSlGgVTRkBaBZHQJLdr5i3G4t1fZQoaAZoCWgPQwg90XXhR6ZyQJSGlFKUaBVL/GgWR0CS3m09hZyNdX2UKGgGaAloD0MIcxO1NHcscECUhpRSlGgVTUQBaBZHQJLeytEG7jF1fZQoaAZoCWgPQwhIbeLkvuxxQJSGlFKUaBVNHQFoFkdAkt9YW56MSHV9lChoBmgJaA9DCINr7uh/UnBAlIaUUpRoFU0cAWgWR0CS34IcR15jdX2UKGgGaAloD0MIq5hKP+EickCUhpRSlGgVTSQBaBZHQJLfgwK0D2d1fZQoaAZoCWgPQwiGH5xPHc5wQJSGlFKUaBVNbgFoFkdAkuBwIQe3hHV9lChoBmgJaA9DCKTFGcMckXFAlIaUUpRoFU0SAWgWR0CS4IvM8ox6dX2UKGgGaAloD0MIBmSvd38xckCUhpRSlGgVTTYBaBZHQJLg2oBJZnt1fZQoaAZoCWgPQwhz843oXvpwQJSGlFKUaBVNewFoFkdAkuILxy4nW3V9lChoBmgJaA9DCFKdDmQ9R3JAlIaUUpRoFUv4aBZHQJLitpmEoOR1fZQoaAZoCWgPQwijWkQUU8ZxQJSGlFKUaBVNJAFoFkdAkuMsY/FBIHV9lChoBmgJaA9DCJ3zUxwHG3FAlIaUUpRoFU0hAWgWR0CS455HVf/ndX2UKGgGaAloD0MIGcdI9ojJbkCUhpRSlGgVTS8BaBZHQJLj6HrQgLZ1fZQoaAZoCWgPQwiaeXJNgUZvQJSGlFKUaBVNJQFoFkdAkuYulXRw63V9lChoBmgJaA9DCF2I1R/honJAlIaUUpRoFUvyaBZHQJLm2FZgXuV1fZQoaAZoCWgPQwhNEHUfgBZsQJSGlFKUaBVL/GgWR0CS5wlfJFLGdX2UKGgGaAloD0MI/wOsVbsgcUCUhpRSlGgVTSIBaBZHQJLnij59E1F1fZQoaAZoCWgPQwg6kWCqmYNuQJSGlFKUaBVNHQFoFkdAkuerux8lX3V9lChoBmgJaA9DCLIS86zkmHJAlIaUUpRoFU1dAWgWR0CS6NlsguAadX2UKGgGaAloD0MIKsWOxmFdckCUhpRSlGgVTSUBaBZHQJLpmiCaqjt1fZQoaAZoCWgPQwhU4jrG1ZpwQJSGlFKUaBVNRQFoFkdAkum35WRzR3V9lChoBmgJaA9DCKq3BrZKtnJAlIaUUpRoFU0pAWgWR0CS6kHbAUL2dX2UKGgGaAloD0MI4Niz5zKrcECUhpRSlGgVTUkBaBZHQJLq450bLlp1fZQoaAZoCWgPQwiDonkAC3tyQJSGlFKUaBVNTwJoFkdAkusWpqASWnV9lChoBmgJaA9DCA7cgTpl12tAlIaUUpRoFU01AWgWR0CS69ke6qbSdX2UKGgGaAloD0MIzSIUWwFFcECUhpRSlGgVTRQBaBZHQJLs1If8uSR1fZQoaAZoCWgPQwhM4UGz68hvQJSGlFKUaBVNTgFoFkdAku1R8IAwPHV9lChoBmgJaA9DCGYucHmsYnNAlIaUUpRoFU1HAWgWR0CS7iMBIWgwdX2UKGgGaAloD0MIXwfOGdE3cUCUhpRSlGgVTTEBaBZHQJLwNISUTtd1fZQoaAZoCWgPQwjK4Ch59bVtQJSGlFKUaBVNIAFoFkdAkvBBJmNBGHV9lChoBmgJaA9DCAb1LXO66kdAlIaUUpRoFUvXaBZHQJLwecOLBKt1fZQoaAZoCWgPQwjVBFH3QSVwQJSGlFKUaBVL9WgWR0CS8MdTYNAkdX2UKGgGaAloD0MIh6jCnyEwcUCUhpRSlGgVTTcBaBZHQJLxLcafjCJ1fZQoaAZoCWgPQwi0y7c+bLFyQJSGlFKUaBVNQwFoFkdAkvIPWMCLdnV9lChoBmgJaA9DCDp0et4N6XJAlIaUUpRoFU0HAWgWR0CTBxseXAuadX2UKGgGaAloD0MISFM9mX8HUkCUhpRSlGgVS79oFkdAkwcw1rIo3XV9lChoBmgJaA9DCPGD86mjHXFAlIaUUpRoFU0mAWgWR0CTBztlqagFdX2UKGgGaAloD0MIE7U0twLscECUhpRSlGgVTVIBaBZHQJMHRr1uivh1fZQoaAZoCWgPQwj8471qpdBwQJSGlFKUaBVNSAFoFkdAkwd5EpiI+HV9lChoBmgJaA9DCAaBlUPLFHFAlIaUUpRoFU2oAWgWR0CTCCIatLcsdX2UKGgGaAloD0MIXk2eshpEcECUhpRSlGgVTUsBaBZHQJMINvVEuxt1fZQoaAZoCWgPQwhXmL7XULtwQJSGlFKUaBVNKQFoFkdAkwlHDvVmSXV9lChoBmgJaA9DCPZBlgWT0HBAlIaUUpRoFU0tAWgWR0CTCeEjxCpndX2UKGgGaAloD0MI9z/AWrVabECUhpRSlGgVTQoBaBZHQJMLc50bLlp1fZQoaAZoCWgPQwg9fJkoArFwQJSGlFKUaBVNIQFoFkdAkwx5O8Cgb3V9lChoBmgJaA9DCAmnBS96xm5AlIaUUpRoFU2AAWgWR0CTD+G/etSydX2UKGgGaAloD0MI9gzhmOUIcUCUhpRSlGgVS/VoFkdAkxC8y31BdHV9lChoBmgJaA9DCIEFMGUgpnBAlIaUUpRoFU0YAWgWR0CTEQC1Z1V6dX2UKGgGaAloD0MIPGu3XejqckCUhpRSlGgVTWQBaBZHQJMRAXm/3391fZQoaAZoCWgPQwhE/S5sTaVyQJSGlFKUaBVNEgFoFkdAkxEV+iJwbXV9lChoBmgJaA9DCFExzt9EJnJAlIaUUpRoFU0ZAWgWR0CTERdxQzk7dX2UKGgGaAloD0MI6USCqea5bECUhpRSlGgVTSoBaBZHQJMRkQCjk+51fZQoaAZoCWgPQwivCP63ku5vQJSGlFKUaBVNKwFoFkdAkxG8L0BfbHV9lChoBmgJaA9DCF6CUx/IbXNAlIaUUpRoFU2aAWgWR0CTEeo3aSLZdX2UKGgGaAloD0MIcM0d/S9ucUCUhpRSlGgVTRABaBZHQJMSwuPFNtZ1fZQoaAZoCWgPQwhXW7G/bCxvQJSGlFKUaBVNNAFoFkdAkxLVGPPszHV9lChoBmgJaA9DCHdoWIw6uHJAlIaUUpRoFU3LAWgWR0CTEvOTaCcxdX2UKGgGaAloD0MItI6qJsilcECUhpRSlGgVTQ8BaBZHQJMUo4ku6Et1fZQoaAZoCWgPQwhhcTjz66dwQJSGlFKUaBVNSQFoFkdAkxTkW/JvHnV9lChoBmgJaA9DCLWHvVCA2XFAlIaUUpRoFUv9aBZHQJMU/xpcoph1fZQoaAZoCWgPQwj2fThIiB5CQJSGlFKUaBVN6ANoFkdAkxZQAp8WsXV9lChoBmgJaA9DCEnajT7mym9AlIaUUpRoFU0cAWgWR0CTGGWAPNFCdX2UKGgGaAloD0MI/DTuzS/McUCUhpRSlGgVTQwBaBZHQJMYzbM5fdB1fZQoaAZoCWgPQwilT6voDyxxQJSGlFKUaBVNDgFoFkdAkxjhEF4cFXV9lChoBmgJaA9DCB3lYDbBA3BAlIaUUpRoFU0PAWgWR0CTGcUWl/H6dX2UKGgGaAloD0MI/tMNFDjtcUCUhpRSlGgVTTwBaBZHQJMaKNWEK3N1fZQoaAZoCWgPQwin6EguvxRzQJSGlFKUaBVNQQFoFkdAkxqJX+2mYXV9lChoBmgJaA9DCMXnTrC/RXFAlIaUUpRoFU0MAWgWR0CTGsf1pTMrdX2UKGgGaAloD0MIEXNJ1XY3cECUhpRSlGgVTQ4BaBZHQJMaxoIv8Il1fZQoaAZoCWgPQwiRe7q6o95wQJSGlFKUaBVNPQFoFkdAkxr47A+IM3V9lChoBmgJaA9DCHjQ7Lq3zG9AlIaUUpRoFU1IAWgWR0CTG2uMMqjKdX2UKGgGaAloD0MIzLT9KytycECUhpRSlGgVTTYBaBZHQJMcDRnezld1fZQoaAZoCWgPQwgPKnEd4xFxQJSGlFKUaBVNCgFoFkdAkxzX4bjtHHV9lChoBmgJaA9DCGLaN/fXo21AlIaUUpRoFU0OAWgWR0CTHNjx0+1SdX2UKGgGaAloD0MIxk54Cc4qb0CUhpRSlGgVTS8BaBZHQJMddNlAeJZ1fZQoaAZoCWgPQwiYvtcQnGhyQJSGlFKUaBVNugFoFkdAkx3LnX/YJ3V9lChoBmgJaA9DCH/C2a1lB21AlIaUUpRoFU0YAWgWR0CTHlT2FnIydX2UKGgGaAloD0MIK4VALnEiQkCUhpRSlGgVS/ZoFkdAkx9Npyp71XV9lChoBmgJaA9DCKq53GCoBXFAlIaUUpRoFUvwaBZHQJMgQYuTRpl1fZQoaAZoCWgPQwilZaTek9RwQJSGlFKUaBVNFQFoFkdAkyB+c+aBqnV9lChoBmgJaA9DCFbT9UQX9nFAlIaUUpRoFU1JAWgWR0CTIg34Kx9odX2UKGgGaAloD0MIcM6I0l4Uc0CUhpRSlGgVTRwBaBZHQJMiLrhR64V1fZQoaAZoCWgPQwj/ykqTUkNvQJSGlFKUaBVNHAFoFkdAkyJkAHVwxXV9lChoBmgJaA9DCFXf+UUJ8m1AlIaUUpRoFU0nAWgWR0CTIrd5prULdX2UKGgGaAloD0MIqwX2mIjTcECUhpRSlGgVTRcBaBZHQJMi7mvGIbh1fZQoaAZoCWgPQwg25Qrvsr1yQJSGlFKUaBVNVgFoFkdAkyORgRbr1XV9lChoBmgJaA9DCFPovMauo3BAlIaUUpRoFU1OAWgWR0CTI/7ROUMYdX2UKGgGaAloD0MIv/IgPYWCcECUhpRSlGgVTSUBaBZHQJMj/9itq591fZQoaAZoCWgPQwg75dGNsOttQJSGlFKUaBVNCgFoFkdAkyQRFiKBNHVlLg=="
|
| 73 |
+
},
|
| 74 |
+
"ep_success_buffer": {
|
| 75 |
+
":type:": "<class 'collections.deque'>",
|
| 76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 77 |
+
},
|
| 78 |
+
"_n_updates": 248,
|
| 79 |
+
"n_steps": 1024,
|
| 80 |
+
"gamma": 0.999,
|
| 81 |
+
"gae_lambda": 0.98,
|
| 82 |
+
"ent_coef": 0.01,
|
| 83 |
+
"vf_coef": 0.5,
|
| 84 |
+
"max_grad_norm": 0.5,
|
| 85 |
+
"batch_size": 64,
|
| 86 |
+
"n_epochs": 4,
|
| 87 |
+
"clip_range": {
|
| 88 |
+
":type:": "<class 'function'>",
|
| 89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
| 90 |
+
},
|
| 91 |
+
"clip_range_vf": null,
|
| 92 |
+
"normalize_advantage": true,
|
| 93 |
+
"target_kl": null
|
| 94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:41cafacae06c4cc8310d9532c68618eecadfca78b868502c1749ae0b3e86eeba
|
| 3 |
+
size 87865
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d28df0dcdd21aebe1a642014428cd818f68441248fd20f954527302ebfbaa9f0
|
| 3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
| 3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
| 2 |
+
Python: 3.8.15
|
| 3 |
+
Stable-Baselines3: 1.6.2
|
| 4 |
+
PyTorch: 1.12.1+cu113
|
| 5 |
+
GPU Enabled: True
|
| 6 |
+
Numpy: 1.21.6
|
| 7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
|
Binary file (196 kB). View file
|
|
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": 257.80299345613014, "std_reward": 15.763333482835407, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-06T03:40:30.195464"}
|