File size: 5,702 Bytes
baa26ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import argparse
import copy
import warnings
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
import warnings
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=DeprecationWarning)
import sys, getopt, os
import numpy as np
import dnnlib
from dnnlib import EasyDict
import dnnlib.tflib as tflib
from dnnlib.tflib import tfutil
from dnnlib.tflib.autosummary import autosummary
from training import misc
import pickle
import argparse
def create_model(config_id = 'config-f', gamma = None, height = 512, width = 512, cond = None, label_size = 0):
train = EasyDict(run_func_name='training.diagnostic.create_initial_pkl') # Options for training loop.
G = EasyDict(func_name='training.networks_stylegan2.G_main') # Options for generator network.
D = EasyDict(func_name='training.networks_stylegan2.D_stylegan2') # Options for discriminator network.
D_loss = EasyDict(func_name='training.loss.D_logistic_r1') # Options for discriminator loss.
sched = EasyDict() # Options for TrainingSchedule.
sc = dnnlib.SubmitConfig() # Options for dnnlib.submit_run().
tf_config = {'rnd.np_random_seed': 1000} # Options for tflib.init_tf().
sched.minibatch_size_base = 192
sched.minibatch_gpu_base = 3
D_loss.gamma = 10
desc = 'stylegan2'
dataset_args = EasyDict() # (tfrecord_dir=dataset)
if cond:
desc += '-cond'; dataset_args.max_label_size = 'full' # conditioned on full label
desc += '-' + config_id
# Configs A-E: Shrink networks to match original StyleGAN.
if config_id != 'config-f':
G.fmap_base = D.fmap_base = 8 << 10
# Config E: Set gamma to 100 and override G & D architecture.
if config_id.startswith('config-e'):
D_loss.gamma = 100
if 'Gorig' in config_id: G.architecture = 'orig'
if 'Gskip' in config_id: G.architecture = 'skip' # (default)
if 'Gresnet' in config_id: G.architecture = 'resnet'
if 'Dorig' in config_id: D.architecture = 'orig'
if 'Dskip' in config_id: D.architecture = 'skip'
if 'Dresnet' in config_id: D.architecture = 'resnet' # (default)
# Configs A-D: Enable progressive growing and switch to networks that support it.
if config_id in ['config-a', 'config-b', 'config-c', 'config-d']:
sched.lod_initial_resolution = 8
sched.G_lrate_base = sched.D_lrate_base = 0.001
sched.G_lrate_dict = sched.D_lrate_dict = {128: 0.0015, 256: 0.002, 512: 0.003, 1024: 0.003}
sched.minibatch_size_base = 32 # (default)
sched.minibatch_size_dict = {8: 256, 16: 128, 32: 64, 64: 32}
sched.minibatch_gpu_base = 4 # (default)
sched.minibatch_gpu_dict = {8: 32, 16: 16, 32: 8, 64: 4}
G.synthesis_func = 'G_synthesis_stylegan_revised'
D.func_name = 'training.networks_stylegan2.D_stylegan'
# Configs A-C: Disable path length regularization.
if config_id in ['config-a', 'config-b', 'config-c']:
G_loss = EasyDict(func_name='training.loss.G_logistic_ns')
# Configs A-B: Disable lazy regularization.
if config_id in ['config-a', 'config-b']:
train.lazy_regularization = False
# Config A: Switch to original StyleGAN networks.
if config_id == 'config-a':
G = EasyDict(func_name='training.networks_stylegan.G_style')
D = EasyDict(func_name='training.networks_stylegan.D_basic')
if gamma is not None:
D_loss.gamma = gamma
G.update(resolution_h=height)
G.update(resolution_w=width)
D.update(resolution_h=height)
D.update(resolution_w=width)
sc.submit_target = dnnlib.SubmitTarget.DIAGNOSTIC
sc.local.do_not_copy_source_files = True
kwargs = EasyDict(train)
# [EDITED]
kwargs.update(G_args=G, D_args=D, tf_config=tf_config, config_id=config_id,
resolution_h=height, resolution_w=width, label_size = label_size)
kwargs.submit_config = copy.deepcopy(sc)
kwargs.submit_config.run_desc = desc
dnnlib.submit_diagnostic(**kwargs)
return f'network-initial-config-f-{height}x{width}-{label_size}.pkl'
def _str_to_bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def _parse_comma_sep(s):
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
def copy_weights(source_pkl, target_pkl, output_pkl):
tflib.init_tf()
with tf.Session():
with tf.device('/gpu:0'):
sourceG, sourceD, sourceGs = pickle.load(open(source_pkl, 'rb'))
targetG, targetD, targetGs = pickle.load(open(target_pkl, 'rb'))
# print('Source:')
# sourceG.print_layers()
# sourceD.print_layers()
# sourceGs.print_layers()
# print('Target:')
# targetG.print_layers()
# targetD.print_layers()
# targetGs.print_layers()
targetG.copy_compatible_trainables_from(sourceG)
targetD.copy_compatible_trainables_from(sourceD)
targetGs.copy_compatible_trainables_from(sourceGs)
with open(os.path.join('./', output_pkl), 'wb') as file:
pickle.dump((targetG, targetD, targetGs), file, protocol=pickle.HIGHEST_PROTOCOL) |