aotrih commited on
Commit
56a575d
·
1 Parent(s): 329334c

Update Melspectrogram interface

Browse files
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/analytics/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6f9e0ad4bff30b21d884c2cdc5bf1551b59209d9314c93a11f6bc4a21e4d26b5
3
  size 243
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e6faff9fec59f231371b1fffcdd7a9f50231cff77aa1744af91907437bc30f6
3
  size 243
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/coremldata.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1ff0c946a5a04b1f3d754001c0951bea58f79e57e04124d6da0f03a09c535acd
3
- size 327
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:623b0eab613190f6748463347d4cf1980003c067b0ad0d9cdcdac0de231e3ff0
3
+ size 329
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/metadata.json CHANGED
@@ -7,9 +7,9 @@
7
  "hasShapeFlexibility" : "0",
8
  "isOptional" : "0",
9
  "dataType" : "Float16",
10
- "formattedType" : "MultiArray (Float16 128 × 1501)",
11
  "shortDescription" : "",
12
- "shape" : "[128, 1501]",
13
  "name" : "melspectrogram_features",
14
  "type" : "MultiArray"
15
  }
@@ -22,6 +22,7 @@
22
  "Ios17.mul" : 2,
23
  "Ios17.sqrt" : 1,
24
  "Ios17.square" : 3,
 
25
  "Ios17.sub" : 2,
26
  "Ios17.matmul" : 1,
27
  "Ios17.conv" : 2,
@@ -30,7 +31,7 @@
30
  "Ios17.add" : 3,
31
  "Ios16.reduceMean" : 2,
32
  "Ios17.realDiv" : 1,
33
- "Ios17.expandDims" : 2,
34
  "Ios17.squeeze" : 2,
35
  "Ios17.reshape" : 2,
36
  "Identity" : 1,
@@ -54,8 +55,8 @@
54
  },
55
  "userDefinedMetadata" : {
56
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
57
- "com.github.apple.coremltools.version" : "8.2",
58
- "com.github.apple.coremltools.source" : "torch==2.6.0"
59
  },
60
  "inputSchema" : [
61
  {
 
7
  "hasShapeFlexibility" : "0",
8
  "isOptional" : "0",
9
  "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 1 × 1501 × 128)",
11
  "shortDescription" : "",
12
+ "shape" : "[1, 1, 1501, 128]",
13
  "name" : "melspectrogram_features",
14
  "type" : "MultiArray"
15
  }
 
22
  "Ios17.mul" : 2,
23
  "Ios17.sqrt" : 1,
24
  "Ios17.square" : 3,
25
+ "Ios17.transpose" : 1,
26
  "Ios17.sub" : 2,
27
  "Ios17.matmul" : 1,
28
  "Ios17.conv" : 2,
 
31
  "Ios17.add" : 3,
32
  "Ios16.reduceMean" : 2,
33
  "Ios17.realDiv" : 1,
34
+ "Ios17.expandDims" : 4,
35
  "Ios17.squeeze" : 2,
36
  "Ios17.reshape" : 2,
37
  "Identity" : 1,
 
55
  },
56
  "userDefinedMetadata" : {
57
  "com.github.apple.coremltools.source_dialect" : "TorchScript",
58
+ "com.github.apple.coremltools.source" : "torch==2.6.0",
59
+ "com.github.apple.coremltools.version" : "8.2"
60
  },
61
  "inputSchema" : [
62
  {
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/model.mil CHANGED
@@ -56,12 +56,12 @@ program(1.0)
56
  tensor<fp16, [128, 1501]> mel_spec_1_cast_fp16 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters_to_fp16, y = magnitudes_cast_fp16)[name = tensor<string, []>("mel_spec_1_cast_fp16")];
57
  tensor<fp16, []> var_56_to_fp16 = const()[name = tensor<string, []>("op_56_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
58
  tensor<fp16, [128, 1501]> mel_spec_3_cast_fp16 = add(x = mel_spec_1_cast_fp16, y = var_56_to_fp16)[name = tensor<string, []>("mel_spec_3_cast_fp16")];
59
- tensor<fp32, []> mel_spec_epsilon_0 = const()[name = tensor<string, []>("mel_spec_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
60
- tensor<fp16, [128, 1501]> mel_spec_cast_fp16 = log(epsilon = mel_spec_epsilon_0, x = mel_spec_3_cast_fp16)[name = tensor<string, []>("mel_spec_cast_fp16")];
61
  tensor<int32, [1]> per_feature_mean_axes_0 = const()[name = tensor<string, []>("per_feature_mean_axes_0"), val = tensor<int32, [1]>([-1])];
62
  tensor<bool, []> per_feature_mean_keep_dims_0 = const()[name = tensor<string, []>("per_feature_mean_keep_dims_0"), val = tensor<bool, []>(true)];
63
- tensor<fp16, [128, 1]> per_feature_mean_cast_fp16 = reduce_mean(axes = per_feature_mean_axes_0, keep_dims = per_feature_mean_keep_dims_0, x = mel_spec_cast_fp16)[name = tensor<string, []>("per_feature_mean_cast_fp16")];
64
- tensor<fp16, [128, 1501]> sub_0_cast_fp16 = sub(x = mel_spec_cast_fp16, y = per_feature_mean_cast_fp16)[name = tensor<string, []>("sub_0_cast_fp16")];
65
  tensor<fp16, [128, 1501]> square_0_cast_fp16 = square(x = sub_0_cast_fp16)[name = tensor<string, []>("square_0_cast_fp16")];
66
  tensor<int32, [1]> reduce_mean_1_axes_0 = const()[name = tensor<string, []>("reduce_mean_1_axes_0"), val = tensor<int32, [1]>([-1])];
67
  tensor<bool, []> reduce_mean_1_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_1_keep_dims_0"), val = tensor<bool, []>(true)];
@@ -71,6 +71,12 @@ program(1.0)
71
  tensor<fp16, [128, 1]> sqrt_0_cast_fp16 = sqrt(x = mul_0_cast_fp16)[name = tensor<string, []>("sqrt_0_cast_fp16")];
72
  tensor<fp16, []> var_70_to_fp16 = const()[name = tensor<string, []>("op_70_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
73
  tensor<fp16, [128, 1]> per_feature_std_cast_fp16 = add(x = sqrt_0_cast_fp16, y = var_70_to_fp16)[name = tensor<string, []>("per_feature_std_cast_fp16")];
74
- tensor<fp16, [128, 1501]> melspectrogram_features = real_div(x = sub_0_cast_fp16, y = per_feature_std_cast_fp16)[name = tensor<string, []>("op_74_cast_fp16")];
 
 
 
 
 
 
75
  } -> (melspectrogram_features);
76
  }
 
56
  tensor<fp16, [128, 1501]> mel_spec_1_cast_fp16 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters_to_fp16, y = magnitudes_cast_fp16)[name = tensor<string, []>("mel_spec_1_cast_fp16")];
57
  tensor<fp16, []> var_56_to_fp16 = const()[name = tensor<string, []>("op_56_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
58
  tensor<fp16, [128, 1501]> mel_spec_3_cast_fp16 = add(x = mel_spec_1_cast_fp16, y = var_56_to_fp16)[name = tensor<string, []>("mel_spec_3_cast_fp16")];
59
+ tensor<fp32, []> mel_spec_5_epsilon_0 = const()[name = tensor<string, []>("mel_spec_5_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
60
+ tensor<fp16, [128, 1501]> mel_spec_5_cast_fp16 = log(epsilon = mel_spec_5_epsilon_0, x = mel_spec_3_cast_fp16)[name = tensor<string, []>("mel_spec_5_cast_fp16")];
61
  tensor<int32, [1]> per_feature_mean_axes_0 = const()[name = tensor<string, []>("per_feature_mean_axes_0"), val = tensor<int32, [1]>([-1])];
62
  tensor<bool, []> per_feature_mean_keep_dims_0 = const()[name = tensor<string, []>("per_feature_mean_keep_dims_0"), val = tensor<bool, []>(true)];
63
+ tensor<fp16, [128, 1]> per_feature_mean_cast_fp16 = reduce_mean(axes = per_feature_mean_axes_0, keep_dims = per_feature_mean_keep_dims_0, x = mel_spec_5_cast_fp16)[name = tensor<string, []>("per_feature_mean_cast_fp16")];
64
+ tensor<fp16, [128, 1501]> sub_0_cast_fp16 = sub(x = mel_spec_5_cast_fp16, y = per_feature_mean_cast_fp16)[name = tensor<string, []>("sub_0_cast_fp16")];
65
  tensor<fp16, [128, 1501]> square_0_cast_fp16 = square(x = sub_0_cast_fp16)[name = tensor<string, []>("square_0_cast_fp16")];
66
  tensor<int32, [1]> reduce_mean_1_axes_0 = const()[name = tensor<string, []>("reduce_mean_1_axes_0"), val = tensor<int32, [1]>([-1])];
67
  tensor<bool, []> reduce_mean_1_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_1_keep_dims_0"), val = tensor<bool, []>(true)];
 
71
  tensor<fp16, [128, 1]> sqrt_0_cast_fp16 = sqrt(x = mul_0_cast_fp16)[name = tensor<string, []>("sqrt_0_cast_fp16")];
72
  tensor<fp16, []> var_70_to_fp16 = const()[name = tensor<string, []>("op_70_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
73
  tensor<fp16, [128, 1]> per_feature_std_cast_fp16 = add(x = sqrt_0_cast_fp16, y = var_70_to_fp16)[name = tensor<string, []>("per_feature_std_cast_fp16")];
74
+ tensor<fp16, [128, 1501]> mel_spec_cast_fp16 = real_div(x = sub_0_cast_fp16, y = per_feature_std_cast_fp16)[name = tensor<string, []>("mel_spec_cast_fp16")];
75
+ tensor<int32, [2]> var_75_perm_0 = const()[name = tensor<string, []>("op_75_perm_0"), val = tensor<int32, [2]>([1, 0])];
76
+ tensor<int32, [1]> var_77_axes_0 = const()[name = tensor<string, []>("op_77_axes_0"), val = tensor<int32, [1]>([0])];
77
+ tensor<fp16, [1501, 128]> var_75_cast_fp16 = transpose(perm = var_75_perm_0, x = mel_spec_cast_fp16)[name = tensor<string, []>("transpose_0")];
78
+ tensor<fp16, [1, 1501, 128]> var_77_cast_fp16 = expand_dims(axes = var_77_axes_0, x = var_75_cast_fp16)[name = tensor<string, []>("op_77_cast_fp16")];
79
+ tensor<int32, [1]> var_79_axes_0 = const()[name = tensor<string, []>("op_79_axes_0"), val = tensor<int32, [1]>([1])];
80
+ tensor<fp16, [1, 1, 1501, 128]> melspectrogram_features = expand_dims(axes = var_79_axes_0, x = var_77_cast_fp16)[name = tensor<string, []>("op_79_cast_fp16")];
81
  } -> (melspectrogram_features);
82
  }