Update Melspectrogram interface
Browse files
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/analytics/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 243
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e6faff9fec59f231371b1fffcdd7a9f50231cff77aa1744af91907437bc30f6
|
3 |
size 243
|
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/coremldata.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:623b0eab613190f6748463347d4cf1980003c067b0ad0d9cdcdac0de231e3ff0
|
3 |
+
size 329
|
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/metadata.json
CHANGED
@@ -7,9 +7,9 @@
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
-
"formattedType" : "MultiArray (Float16
|
11 |
"shortDescription" : "",
|
12 |
-
"shape" : "[
|
13 |
"name" : "melspectrogram_features",
|
14 |
"type" : "MultiArray"
|
15 |
}
|
@@ -22,6 +22,7 @@
|
|
22 |
"Ios17.mul" : 2,
|
23 |
"Ios17.sqrt" : 1,
|
24 |
"Ios17.square" : 3,
|
|
|
25 |
"Ios17.sub" : 2,
|
26 |
"Ios17.matmul" : 1,
|
27 |
"Ios17.conv" : 2,
|
@@ -30,7 +31,7 @@
|
|
30 |
"Ios17.add" : 3,
|
31 |
"Ios16.reduceMean" : 2,
|
32 |
"Ios17.realDiv" : 1,
|
33 |
-
"Ios17.expandDims" :
|
34 |
"Ios17.squeeze" : 2,
|
35 |
"Ios17.reshape" : 2,
|
36 |
"Identity" : 1,
|
@@ -54,8 +55,8 @@
|
|
54 |
},
|
55 |
"userDefinedMetadata" : {
|
56 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
57 |
-
"com.github.apple.coremltools.
|
58 |
-
"com.github.apple.coremltools.
|
59 |
},
|
60 |
"inputSchema" : [
|
61 |
{
|
|
|
7 |
"hasShapeFlexibility" : "0",
|
8 |
"isOptional" : "0",
|
9 |
"dataType" : "Float16",
|
10 |
+
"formattedType" : "MultiArray (Float16 1 × 1 × 1501 × 128)",
|
11 |
"shortDescription" : "",
|
12 |
+
"shape" : "[1, 1, 1501, 128]",
|
13 |
"name" : "melspectrogram_features",
|
14 |
"type" : "MultiArray"
|
15 |
}
|
|
|
22 |
"Ios17.mul" : 2,
|
23 |
"Ios17.sqrt" : 1,
|
24 |
"Ios17.square" : 3,
|
25 |
+
"Ios17.transpose" : 1,
|
26 |
"Ios17.sub" : 2,
|
27 |
"Ios17.matmul" : 1,
|
28 |
"Ios17.conv" : 2,
|
|
|
31 |
"Ios17.add" : 3,
|
32 |
"Ios16.reduceMean" : 2,
|
33 |
"Ios17.realDiv" : 1,
|
34 |
+
"Ios17.expandDims" : 4,
|
35 |
"Ios17.squeeze" : 2,
|
36 |
"Ios17.reshape" : 2,
|
37 |
"Identity" : 1,
|
|
|
55 |
},
|
56 |
"userDefinedMetadata" : {
|
57 |
"com.github.apple.coremltools.source_dialect" : "TorchScript",
|
58 |
+
"com.github.apple.coremltools.source" : "torch==2.6.0",
|
59 |
+
"com.github.apple.coremltools.version" : "8.2"
|
60 |
},
|
61 |
"inputSchema" : [
|
62 |
{
|
nvidia_parakeet-v2/MelSpectrogram.mlmodelc/model.mil
CHANGED
@@ -56,12 +56,12 @@ program(1.0)
|
|
56 |
tensor<fp16, [128, 1501]> mel_spec_1_cast_fp16 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters_to_fp16, y = magnitudes_cast_fp16)[name = tensor<string, []>("mel_spec_1_cast_fp16")];
|
57 |
tensor<fp16, []> var_56_to_fp16 = const()[name = tensor<string, []>("op_56_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
58 |
tensor<fp16, [128, 1501]> mel_spec_3_cast_fp16 = add(x = mel_spec_1_cast_fp16, y = var_56_to_fp16)[name = tensor<string, []>("mel_spec_3_cast_fp16")];
|
59 |
-
tensor<fp32, []>
|
60 |
-
tensor<fp16, [128, 1501]>
|
61 |
tensor<int32, [1]> per_feature_mean_axes_0 = const()[name = tensor<string, []>("per_feature_mean_axes_0"), val = tensor<int32, [1]>([-1])];
|
62 |
tensor<bool, []> per_feature_mean_keep_dims_0 = const()[name = tensor<string, []>("per_feature_mean_keep_dims_0"), val = tensor<bool, []>(true)];
|
63 |
-
tensor<fp16, [128, 1]> per_feature_mean_cast_fp16 = reduce_mean(axes = per_feature_mean_axes_0, keep_dims = per_feature_mean_keep_dims_0, x =
|
64 |
-
tensor<fp16, [128, 1501]> sub_0_cast_fp16 = sub(x =
|
65 |
tensor<fp16, [128, 1501]> square_0_cast_fp16 = square(x = sub_0_cast_fp16)[name = tensor<string, []>("square_0_cast_fp16")];
|
66 |
tensor<int32, [1]> reduce_mean_1_axes_0 = const()[name = tensor<string, []>("reduce_mean_1_axes_0"), val = tensor<int32, [1]>([-1])];
|
67 |
tensor<bool, []> reduce_mean_1_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_1_keep_dims_0"), val = tensor<bool, []>(true)];
|
@@ -71,6 +71,12 @@ program(1.0)
|
|
71 |
tensor<fp16, [128, 1]> sqrt_0_cast_fp16 = sqrt(x = mul_0_cast_fp16)[name = tensor<string, []>("sqrt_0_cast_fp16")];
|
72 |
tensor<fp16, []> var_70_to_fp16 = const()[name = tensor<string, []>("op_70_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
73 |
tensor<fp16, [128, 1]> per_feature_std_cast_fp16 = add(x = sqrt_0_cast_fp16, y = var_70_to_fp16)[name = tensor<string, []>("per_feature_std_cast_fp16")];
|
74 |
-
tensor<fp16, [128, 1501]>
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
} -> (melspectrogram_features);
|
76 |
}
|
|
|
56 |
tensor<fp16, [128, 1501]> mel_spec_1_cast_fp16 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters_to_fp16, y = magnitudes_cast_fp16)[name = tensor<string, []>("mel_spec_1_cast_fp16")];
|
57 |
tensor<fp16, []> var_56_to_fp16 = const()[name = tensor<string, []>("op_56_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
|
58 |
tensor<fp16, [128, 1501]> mel_spec_3_cast_fp16 = add(x = mel_spec_1_cast_fp16, y = var_56_to_fp16)[name = tensor<string, []>("mel_spec_3_cast_fp16")];
|
59 |
+
tensor<fp32, []> mel_spec_5_epsilon_0 = const()[name = tensor<string, []>("mel_spec_5_epsilon_0"), val = tensor<fp32, []>(0x1p-149)];
|
60 |
+
tensor<fp16, [128, 1501]> mel_spec_5_cast_fp16 = log(epsilon = mel_spec_5_epsilon_0, x = mel_spec_3_cast_fp16)[name = tensor<string, []>("mel_spec_5_cast_fp16")];
|
61 |
tensor<int32, [1]> per_feature_mean_axes_0 = const()[name = tensor<string, []>("per_feature_mean_axes_0"), val = tensor<int32, [1]>([-1])];
|
62 |
tensor<bool, []> per_feature_mean_keep_dims_0 = const()[name = tensor<string, []>("per_feature_mean_keep_dims_0"), val = tensor<bool, []>(true)];
|
63 |
+
tensor<fp16, [128, 1]> per_feature_mean_cast_fp16 = reduce_mean(axes = per_feature_mean_axes_0, keep_dims = per_feature_mean_keep_dims_0, x = mel_spec_5_cast_fp16)[name = tensor<string, []>("per_feature_mean_cast_fp16")];
|
64 |
+
tensor<fp16, [128, 1501]> sub_0_cast_fp16 = sub(x = mel_spec_5_cast_fp16, y = per_feature_mean_cast_fp16)[name = tensor<string, []>("sub_0_cast_fp16")];
|
65 |
tensor<fp16, [128, 1501]> square_0_cast_fp16 = square(x = sub_0_cast_fp16)[name = tensor<string, []>("square_0_cast_fp16")];
|
66 |
tensor<int32, [1]> reduce_mean_1_axes_0 = const()[name = tensor<string, []>("reduce_mean_1_axes_0"), val = tensor<int32, [1]>([-1])];
|
67 |
tensor<bool, []> reduce_mean_1_keep_dims_0 = const()[name = tensor<string, []>("reduce_mean_1_keep_dims_0"), val = tensor<bool, []>(true)];
|
|
|
71 |
tensor<fp16, [128, 1]> sqrt_0_cast_fp16 = sqrt(x = mul_0_cast_fp16)[name = tensor<string, []>("sqrt_0_cast_fp16")];
|
72 |
tensor<fp16, []> var_70_to_fp16 = const()[name = tensor<string, []>("op_70_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
73 |
tensor<fp16, [128, 1]> per_feature_std_cast_fp16 = add(x = sqrt_0_cast_fp16, y = var_70_to_fp16)[name = tensor<string, []>("per_feature_std_cast_fp16")];
|
74 |
+
tensor<fp16, [128, 1501]> mel_spec_cast_fp16 = real_div(x = sub_0_cast_fp16, y = per_feature_std_cast_fp16)[name = tensor<string, []>("mel_spec_cast_fp16")];
|
75 |
+
tensor<int32, [2]> var_75_perm_0 = const()[name = tensor<string, []>("op_75_perm_0"), val = tensor<int32, [2]>([1, 0])];
|
76 |
+
tensor<int32, [1]> var_77_axes_0 = const()[name = tensor<string, []>("op_77_axes_0"), val = tensor<int32, [1]>([0])];
|
77 |
+
tensor<fp16, [1501, 128]> var_75_cast_fp16 = transpose(perm = var_75_perm_0, x = mel_spec_cast_fp16)[name = tensor<string, []>("transpose_0")];
|
78 |
+
tensor<fp16, [1, 1501, 128]> var_77_cast_fp16 = expand_dims(axes = var_77_axes_0, x = var_75_cast_fp16)[name = tensor<string, []>("op_77_cast_fp16")];
|
79 |
+
tensor<int32, [1]> var_79_axes_0 = const()[name = tensor<string, []>("op_79_axes_0"), val = tensor<int32, [1]>([1])];
|
80 |
+
tensor<fp16, [1, 1, 1501, 128]> melspectrogram_features = expand_dims(axes = var_79_axes_0, x = var_77_cast_fp16)[name = tensor<string, []>("op_79_cast_fp16")];
|
81 |
} -> (melspectrogram_features);
|
82 |
}
|