program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3401.3.1"}, {"coremlc-version", "3401.4.1"}, {"coremltools-component-torch", "2.6.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.2"}})] { func main(tensor decoder_output_projected, tensor encoder_output_projected) { tensor input_1_cast_fp16 = add(x = decoder_output_projected, y = encoder_output_projected)[name = tensor("input_1_cast_fp16")]; tensor input_3_cast_fp16 = relu(x = input_1_cast_fp16)[name = tensor("input_3_cast_fp16")]; tensor joint_net_1_weight_to_fp16 = const()[name = tensor("joint_net_1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor joint_net_1_bias_to_fp16 = const()[name = tensor("joint_net_1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1318528)))]; tensor linear_0_cast_fp16 = linear(bias = joint_net_1_bias_to_fp16, weight = joint_net_1_weight_to_fp16, x = input_3_cast_fp16)[name = tensor("linear_0_cast_fp16")]; tensor var_11 = const()[name = tensor("op_11"), val = tensor(-1)]; tensor var_13_softmax_cast_fp16 = softmax(axis = var_11, x = linear_0_cast_fp16)[name = tensor("op_13_softmax_cast_fp16")]; tensor var_13_epsilon_0 = const()[name = tensor("op_13_epsilon_0"), val = tensor(0x1p-149)]; tensor logits = log(epsilon = var_13_epsilon_0, x = var_13_softmax_cast_fp16)[name = tensor("op_13_cast_fp16")]; } -> (logits); }