program(1.0) [buildInfo = dict, tensor>({{"coremlc-component-MIL", "3401.3.1"}, {"coremlc-version", "3401.4.1"}, {"coremltools-component-torch", "2.5.0"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.2"}})] { func main(tensor melspectrogram_features) { tensor var_90_pad_type_0 = const()[name = tensor("op_90_pad_type_0"), val = tensor("custom")]; tensor var_90_pad_0 = const()[name = tensor("op_90_pad_0"), val = tensor([0, 0, 1, 1])]; tensor var_90_strides_0 = const()[name = tensor("op_90_strides_0"), val = tensor([1, 1])]; tensor var_90_dilations_0 = const()[name = tensor("op_90_dilations_0"), val = tensor([1, 1])]; tensor var_90_groups_0 = const()[name = tensor("op_90_groups_0"), val = tensor(1)]; tensor var_65_to_fp16 = const()[name = tensor("op_65_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; tensor var_71_to_fp16 = const()[name = tensor("op_71_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(491648)))]; tensor var_90_cast_fp16 = conv(bias = var_71_to_fp16, dilations = var_90_dilations_0, groups = var_90_groups_0, pad = var_90_pad_0, pad_type = var_90_pad_type_0, strides = var_90_strides_0, weight = var_65_to_fp16, x = melspectrogram_features)[name = tensor("op_90_cast_fp16")]; tensor hidden_states_1_mode_0 = const()[name = tensor("hidden_states_1_mode_0"), val = tensor("EXACT")]; tensor hidden_states_1_cast_fp16 = gelu(mode = hidden_states_1_mode_0, x = var_90_cast_fp16)[name = tensor("hidden_states_1_cast_fp16")]; tensor var_130_pad_type_0 = const()[name = tensor("op_130_pad_type_0"), val = tensor("custom")]; tensor var_130_pad_0 = const()[name = tensor("op_130_pad_0"), val = tensor([0, 0, 1, 1])]; tensor var_130_strides_0 = const()[name = tensor("op_130_strides_0"), val = tensor([2, 2])]; tensor var_130_dilations_0 = const()[name = tensor("op_130_dilations_0"), val = tensor([1, 1])]; tensor var_130_groups_0 = const()[name = tensor("op_130_groups_0"), val = tensor(1)]; tensor var_105_to_fp16 = const()[name = tensor("op_105_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(493760)))]; tensor var_111_to_fp16 = const()[name = tensor("op_111_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6785280)))]; tensor var_130_cast_fp16 = conv(bias = var_111_to_fp16, dilations = var_130_dilations_0, groups = var_130_groups_0, pad = var_130_pad_0, pad_type = var_130_pad_type_0, strides = var_130_strides_0, weight = var_105_to_fp16, x = hidden_states_1_cast_fp16)[name = tensor("op_130_cast_fp16")]; tensor hidden_states_3_mode_0 = const()[name = tensor("hidden_states_3_mode_0"), val = tensor("EXACT")]; tensor hidden_states_3_cast_fp16 = gelu(mode = hidden_states_3_mode_0, x = var_130_cast_fp16)[name = tensor("hidden_states_3_cast_fp16")]; tensor var_148_to_fp16 = const()[name = tensor("op_148_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6787392)))]; tensor inputs_1_cast_fp16 = add(x = hidden_states_3_cast_fp16, y = var_148_to_fp16)[name = tensor("inputs_1_cast_fp16")]; tensor var_158 = const()[name = tensor("op_158"), val = tensor(3)]; tensor out_1_axes_0 = const()[name = tensor("out_1_axes_0"), val = tensor([1])]; tensor var_180_to_fp16 = const()[name = tensor("op_180_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_1_cast_fp16 = layer_norm(axes = out_1_axes_0, epsilon = var_180_to_fp16, x = inputs_1_cast_fp16)[name = tensor("out_1_cast_fp16")]; tensor obj_1_mean_0_to_fp16 = const()[name = tensor("obj_1_mean_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9859456)))]; tensor obj_1_variance_0_to_fp16 = const()[name = tensor("obj_1_variance_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9861568)))]; tensor obj_1_gamma_0_to_fp16 = const()[name = tensor("obj_1_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9863680)))]; tensor obj_1_beta_0_to_fp16 = const()[name = tensor("obj_1_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9865792)))]; tensor obj_1_epsilon_0_to_fp16 = const()[name = tensor("obj_1_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_1_cast_fp16 = batch_norm(beta = obj_1_beta_0_to_fp16, epsilon = obj_1_epsilon_0_to_fp16, gamma = obj_1_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_1_cast_fp16)[name = tensor("obj_1_cast_fp16")]; tensor query_1_pad_type_0 = const()[name = tensor("query_1_pad_type_0"), val = tensor("valid")]; tensor query_1_strides_0 = const()[name = tensor("query_1_strides_0"), val = tensor([1, 1])]; tensor query_1_pad_0 = const()[name = tensor("query_1_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_1_dilations_0 = const()[name = tensor("query_1_dilations_0"), val = tensor([1, 1])]; tensor query_1_groups_0 = const()[name = tensor("query_1_groups_0"), val = tensor(1)]; tensor layers_0_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_0_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9867904)))]; tensor layers_0_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_0_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(11965120)))]; tensor query_1_cast_fp16 = conv(bias = layers_0_self_attn_q_proj_bias_to_fp16, dilations = query_1_dilations_0, groups = query_1_groups_0, pad = query_1_pad_0, pad_type = query_1_pad_type_0, strides = query_1_strides_0, weight = layers_0_self_attn_q_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor("query_1_cast_fp16")]; tensor key_1_pad_type_0 = const()[name = tensor("key_1_pad_type_0"), val = tensor("valid")]; tensor key_1_strides_0 = const()[name = tensor("key_1_strides_0"), val = tensor([1, 1])]; tensor key_1_pad_0 = const()[name = tensor("key_1_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_1_dilations_0 = const()[name = tensor("key_1_dilations_0"), val = tensor([1, 1])]; tensor key_1_groups_0 = const()[name = tensor("key_1_groups_0"), val = tensor(1)]; tensor layers_0_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_0_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(11967232)))]; tensor key_1_cast_fp16 = conv(dilations = key_1_dilations_0, groups = key_1_groups_0, pad = key_1_pad_0, pad_type = key_1_pad_type_0, strides = key_1_strides_0, weight = layers_0_self_attn_k_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor("key_1_cast_fp16")]; tensor value_1_pad_type_0 = const()[name = tensor("value_1_pad_type_0"), val = tensor("valid")]; tensor value_1_strides_0 = const()[name = tensor("value_1_strides_0"), val = tensor([1, 1])]; tensor value_1_pad_0 = const()[name = tensor("value_1_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_1_dilations_0 = const()[name = tensor("value_1_dilations_0"), val = tensor([1, 1])]; tensor value_1_groups_0 = const()[name = tensor("value_1_groups_0"), val = tensor(1)]; tensor layers_0_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_0_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(14064448)))]; tensor layers_0_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_0_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16161664)))]; tensor value_1_cast_fp16 = conv(bias = layers_0_self_attn_v_proj_bias_to_fp16, dilations = value_1_dilations_0, groups = value_1_groups_0, pad = value_1_pad_0, pad_type = value_1_pad_type_0, strides = value_1_strides_0, weight = layers_0_self_attn_v_proj_weight_to_fp16, x = obj_1_cast_fp16)[name = tensor("value_1_cast_fp16")]; tensor var_216 = const()[name = tensor("op_216"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_1_cast_fp16 = reshape(shape = var_216, x = query_1_cast_fp16)[name = tensor("mh_q_1_cast_fp16")]; tensor var_218_to_fp16 = const()[name = tensor("op_218_to_fp16"), val = tensor(0x1p-3)]; tensor var_219_cast_fp16 = mul(x = mh_q_1_cast_fp16, y = var_218_to_fp16)[name = tensor("op_219_cast_fp16")]; tensor var_222 = const()[name = tensor("op_222"), val = tensor([1, 16, 64, 1500])]; tensor var_223_cast_fp16 = reshape(shape = var_222, x = key_1_cast_fp16)[name = tensor("op_223_cast_fp16")]; tensor mh_w_1_transpose_x_0 = const()[name = tensor("mh_w_1_transpose_x_0"), val = tensor(true)]; tensor mh_w_1_transpose_y_0 = const()[name = tensor("mh_w_1_transpose_y_0"), val = tensor(false)]; tensor mh_w_1_cast_fp16 = matmul(transpose_x = mh_w_1_transpose_x_0, transpose_y = mh_w_1_transpose_y_0, x = var_219_cast_fp16, y = var_223_cast_fp16)[name = tensor("mh_w_1_cast_fp16")]; tensor var_226_cast_fp16 = softmax(axis = var_158, x = mh_w_1_cast_fp16)[name = tensor("op_226_cast_fp16")]; tensor var_227 = const()[name = tensor("op_227"), val = tensor([1, 16, 64, 1500])]; tensor var_228_cast_fp16 = reshape(shape = var_227, x = value_1_cast_fp16)[name = tensor("op_228_cast_fp16")]; tensor attn_1_transpose_x_0 = const()[name = tensor("attn_1_transpose_x_0"), val = tensor(false)]; tensor attn_1_transpose_y_0 = const()[name = tensor("attn_1_transpose_y_0"), val = tensor(true)]; tensor attn_1_cast_fp16 = matmul(transpose_x = attn_1_transpose_x_0, transpose_y = attn_1_transpose_y_0, x = var_228_cast_fp16, y = var_226_cast_fp16)[name = tensor("attn_1_cast_fp16")]; tensor var_231 = const()[name = tensor("op_231"), val = tensor([1, 1024, 1, 1500])]; tensor input_1_cast_fp16 = reshape(shape = var_231, x = attn_1_cast_fp16)[name = tensor("input_1_cast_fp16")]; tensor obj_3_pad_type_0 = const()[name = tensor("obj_3_pad_type_0"), val = tensor("valid")]; tensor obj_3_strides_0 = const()[name = tensor("obj_3_strides_0"), val = tensor([1, 1])]; tensor obj_3_pad_0 = const()[name = tensor("obj_3_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_3_dilations_0 = const()[name = tensor("obj_3_dilations_0"), val = tensor([1, 1])]; tensor obj_3_groups_0 = const()[name = tensor("obj_3_groups_0"), val = tensor(1)]; tensor layers_0_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_0_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(16163776)))]; tensor layers_0_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_0_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(18260992)))]; tensor obj_3_cast_fp16 = conv(bias = layers_0_self_attn_o_proj_bias_to_fp16, dilations = obj_3_dilations_0, groups = obj_3_groups_0, pad = obj_3_pad_0, pad_type = obj_3_pad_type_0, strides = obj_3_strides_0, weight = layers_0_self_attn_o_proj_weight_to_fp16, x = input_1_cast_fp16)[name = tensor("obj_3_cast_fp16")]; tensor inputs_3_cast_fp16 = add(x = inputs_1_cast_fp16, y = obj_3_cast_fp16)[name = tensor("inputs_3_cast_fp16")]; tensor out_3_axes_0 = const()[name = tensor("out_3_axes_0"), val = tensor([1])]; tensor var_249_to_fp16 = const()[name = tensor("op_249_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_3_cast_fp16 = layer_norm(axes = out_3_axes_0, epsilon = var_249_to_fp16, x = inputs_3_cast_fp16)[name = tensor("out_3_cast_fp16")]; tensor input_3_gamma_0_to_fp16 = const()[name = tensor("input_3_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(18263104)))]; tensor input_3_beta_0_to_fp16 = const()[name = tensor("input_3_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(18265216)))]; tensor input_3_epsilon_0_to_fp16 = const()[name = tensor("input_3_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_3_cast_fp16 = batch_norm(beta = input_3_beta_0_to_fp16, epsilon = input_3_epsilon_0_to_fp16, gamma = input_3_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_3_cast_fp16)[name = tensor("input_3_cast_fp16")]; tensor input_5_pad_type_0 = const()[name = tensor("input_5_pad_type_0"), val = tensor("valid")]; tensor input_5_strides_0 = const()[name = tensor("input_5_strides_0"), val = tensor([1, 1])]; tensor input_5_pad_0 = const()[name = tensor("input_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_5_dilations_0 = const()[name = tensor("input_5_dilations_0"), val = tensor([1, 1])]; tensor input_5_groups_0 = const()[name = tensor("input_5_groups_0"), val = tensor(1)]; tensor layers_0_fc1_weight_to_fp16 = const()[name = tensor("layers_0_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(18267328)))]; tensor layers_0_fc1_bias_to_fp16 = const()[name = tensor("layers_0_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(26656000)))]; tensor input_5_cast_fp16 = conv(bias = layers_0_fc1_bias_to_fp16, dilations = input_5_dilations_0, groups = input_5_groups_0, pad = input_5_pad_0, pad_type = input_5_pad_type_0, strides = input_5_strides_0, weight = layers_0_fc1_weight_to_fp16, x = input_3_cast_fp16)[name = tensor("input_5_cast_fp16")]; tensor input_7_mode_0 = const()[name = tensor("input_7_mode_0"), val = tensor("EXACT")]; tensor input_7_cast_fp16 = gelu(mode = input_7_mode_0, x = input_5_cast_fp16)[name = tensor("input_7_cast_fp16")]; tensor hidden_states_5_pad_type_0 = const()[name = tensor("hidden_states_5_pad_type_0"), val = tensor("valid")]; tensor hidden_states_5_strides_0 = const()[name = tensor("hidden_states_5_strides_0"), val = tensor([1, 1])]; tensor hidden_states_5_pad_0 = const()[name = tensor("hidden_states_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_5_dilations_0 = const()[name = tensor("hidden_states_5_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_5_groups_0 = const()[name = tensor("hidden_states_5_groups_0"), val = tensor(1)]; tensor layers_0_fc2_weight_to_fp16 = const()[name = tensor("layers_0_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(26664256)))]; tensor layers_0_fc2_bias_to_fp16 = const()[name = tensor("layers_0_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(35052928)))]; tensor hidden_states_5_cast_fp16 = conv(bias = layers_0_fc2_bias_to_fp16, dilations = hidden_states_5_dilations_0, groups = hidden_states_5_groups_0, pad = hidden_states_5_pad_0, pad_type = hidden_states_5_pad_type_0, strides = hidden_states_5_strides_0, weight = layers_0_fc2_weight_to_fp16, x = input_7_cast_fp16)[name = tensor("hidden_states_5_cast_fp16")]; tensor inputs_5_cast_fp16 = add(x = inputs_3_cast_fp16, y = hidden_states_5_cast_fp16)[name = tensor("inputs_5_cast_fp16")]; tensor var_278 = const()[name = tensor("op_278"), val = tensor(3)]; tensor out_5_axes_0 = const()[name = tensor("out_5_axes_0"), val = tensor([1])]; tensor var_300_to_fp16 = const()[name = tensor("op_300_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_5_cast_fp16 = layer_norm(axes = out_5_axes_0, epsilon = var_300_to_fp16, x = inputs_5_cast_fp16)[name = tensor("out_5_cast_fp16")]; tensor obj_5_gamma_0_to_fp16 = const()[name = tensor("obj_5_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(35055040)))]; tensor obj_5_beta_0_to_fp16 = const()[name = tensor("obj_5_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(35057152)))]; tensor obj_5_epsilon_0_to_fp16 = const()[name = tensor("obj_5_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_5_cast_fp16 = batch_norm(beta = obj_5_beta_0_to_fp16, epsilon = obj_5_epsilon_0_to_fp16, gamma = obj_5_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_5_cast_fp16)[name = tensor("obj_5_cast_fp16")]; tensor query_3_pad_type_0 = const()[name = tensor("query_3_pad_type_0"), val = tensor("valid")]; tensor query_3_strides_0 = const()[name = tensor("query_3_strides_0"), val = tensor([1, 1])]; tensor query_3_pad_0 = const()[name = tensor("query_3_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_3_dilations_0 = const()[name = tensor("query_3_dilations_0"), val = tensor([1, 1])]; tensor query_3_groups_0 = const()[name = tensor("query_3_groups_0"), val = tensor(1)]; tensor layers_1_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_1_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(35059264)))]; tensor layers_1_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_1_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37156480)))]; tensor query_3_cast_fp16 = conv(bias = layers_1_self_attn_q_proj_bias_to_fp16, dilations = query_3_dilations_0, groups = query_3_groups_0, pad = query_3_pad_0, pad_type = query_3_pad_type_0, strides = query_3_strides_0, weight = layers_1_self_attn_q_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = tensor("query_3_cast_fp16")]; tensor key_3_pad_type_0 = const()[name = tensor("key_3_pad_type_0"), val = tensor("valid")]; tensor key_3_strides_0 = const()[name = tensor("key_3_strides_0"), val = tensor([1, 1])]; tensor key_3_pad_0 = const()[name = tensor("key_3_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_3_dilations_0 = const()[name = tensor("key_3_dilations_0"), val = tensor([1, 1])]; tensor key_3_groups_0 = const()[name = tensor("key_3_groups_0"), val = tensor(1)]; tensor layers_1_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_1_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37158592)))]; tensor key_3_cast_fp16 = conv(dilations = key_3_dilations_0, groups = key_3_groups_0, pad = key_3_pad_0, pad_type = key_3_pad_type_0, strides = key_3_strides_0, weight = layers_1_self_attn_k_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = tensor("key_3_cast_fp16")]; tensor value_3_pad_type_0 = const()[name = tensor("value_3_pad_type_0"), val = tensor("valid")]; tensor value_3_strides_0 = const()[name = tensor("value_3_strides_0"), val = tensor([1, 1])]; tensor value_3_pad_0 = const()[name = tensor("value_3_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_3_dilations_0 = const()[name = tensor("value_3_dilations_0"), val = tensor([1, 1])]; tensor value_3_groups_0 = const()[name = tensor("value_3_groups_0"), val = tensor(1)]; tensor layers_1_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_1_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(39255808)))]; tensor layers_1_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_1_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41353024)))]; tensor value_3_cast_fp16 = conv(bias = layers_1_self_attn_v_proj_bias_to_fp16, dilations = value_3_dilations_0, groups = value_3_groups_0, pad = value_3_pad_0, pad_type = value_3_pad_type_0, strides = value_3_strides_0, weight = layers_1_self_attn_v_proj_weight_to_fp16, x = obj_5_cast_fp16)[name = tensor("value_3_cast_fp16")]; tensor var_336 = const()[name = tensor("op_336"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_3_cast_fp16 = reshape(shape = var_336, x = query_3_cast_fp16)[name = tensor("mh_q_3_cast_fp16")]; tensor var_338_to_fp16 = const()[name = tensor("op_338_to_fp16"), val = tensor(0x1p-3)]; tensor var_339_cast_fp16 = mul(x = mh_q_3_cast_fp16, y = var_338_to_fp16)[name = tensor("op_339_cast_fp16")]; tensor var_342 = const()[name = tensor("op_342"), val = tensor([1, 16, 64, 1500])]; tensor var_343_cast_fp16 = reshape(shape = var_342, x = key_3_cast_fp16)[name = tensor("op_343_cast_fp16")]; tensor mh_w_3_transpose_x_0 = const()[name = tensor("mh_w_3_transpose_x_0"), val = tensor(true)]; tensor mh_w_3_transpose_y_0 = const()[name = tensor("mh_w_3_transpose_y_0"), val = tensor(false)]; tensor mh_w_3_cast_fp16 = matmul(transpose_x = mh_w_3_transpose_x_0, transpose_y = mh_w_3_transpose_y_0, x = var_339_cast_fp16, y = var_343_cast_fp16)[name = tensor("mh_w_3_cast_fp16")]; tensor var_346_cast_fp16 = softmax(axis = var_278, x = mh_w_3_cast_fp16)[name = tensor("op_346_cast_fp16")]; tensor var_347 = const()[name = tensor("op_347"), val = tensor([1, 16, 64, 1500])]; tensor var_348_cast_fp16 = reshape(shape = var_347, x = value_3_cast_fp16)[name = tensor("op_348_cast_fp16")]; tensor attn_3_transpose_x_0 = const()[name = tensor("attn_3_transpose_x_0"), val = tensor(false)]; tensor attn_3_transpose_y_0 = const()[name = tensor("attn_3_transpose_y_0"), val = tensor(true)]; tensor attn_3_cast_fp16 = matmul(transpose_x = attn_3_transpose_x_0, transpose_y = attn_3_transpose_y_0, x = var_348_cast_fp16, y = var_346_cast_fp16)[name = tensor("attn_3_cast_fp16")]; tensor var_351 = const()[name = tensor("op_351"), val = tensor([1, 1024, 1, 1500])]; tensor input_9_cast_fp16 = reshape(shape = var_351, x = attn_3_cast_fp16)[name = tensor("input_9_cast_fp16")]; tensor obj_7_pad_type_0 = const()[name = tensor("obj_7_pad_type_0"), val = tensor("valid")]; tensor obj_7_strides_0 = const()[name = tensor("obj_7_strides_0"), val = tensor([1, 1])]; tensor obj_7_pad_0 = const()[name = tensor("obj_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_7_dilations_0 = const()[name = tensor("obj_7_dilations_0"), val = tensor([1, 1])]; tensor obj_7_groups_0 = const()[name = tensor("obj_7_groups_0"), val = tensor(1)]; tensor layers_1_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_1_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(41355136)))]; tensor layers_1_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_1_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(43452352)))]; tensor obj_7_cast_fp16 = conv(bias = layers_1_self_attn_o_proj_bias_to_fp16, dilations = obj_7_dilations_0, groups = obj_7_groups_0, pad = obj_7_pad_0, pad_type = obj_7_pad_type_0, strides = obj_7_strides_0, weight = layers_1_self_attn_o_proj_weight_to_fp16, x = input_9_cast_fp16)[name = tensor("obj_7_cast_fp16")]; tensor inputs_7_cast_fp16 = add(x = inputs_5_cast_fp16, y = obj_7_cast_fp16)[name = tensor("inputs_7_cast_fp16")]; tensor out_7_axes_0 = const()[name = tensor("out_7_axes_0"), val = tensor([1])]; tensor var_369_to_fp16 = const()[name = tensor("op_369_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_7_cast_fp16 = layer_norm(axes = out_7_axes_0, epsilon = var_369_to_fp16, x = inputs_7_cast_fp16)[name = tensor("out_7_cast_fp16")]; tensor input_11_gamma_0_to_fp16 = const()[name = tensor("input_11_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(43454464)))]; tensor input_11_beta_0_to_fp16 = const()[name = tensor("input_11_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(43456576)))]; tensor input_11_epsilon_0_to_fp16 = const()[name = tensor("input_11_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_11_cast_fp16 = batch_norm(beta = input_11_beta_0_to_fp16, epsilon = input_11_epsilon_0_to_fp16, gamma = input_11_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_7_cast_fp16)[name = tensor("input_11_cast_fp16")]; tensor input_13_pad_type_0 = const()[name = tensor("input_13_pad_type_0"), val = tensor("valid")]; tensor input_13_strides_0 = const()[name = tensor("input_13_strides_0"), val = tensor([1, 1])]; tensor input_13_pad_0 = const()[name = tensor("input_13_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_13_dilations_0 = const()[name = tensor("input_13_dilations_0"), val = tensor([1, 1])]; tensor input_13_groups_0 = const()[name = tensor("input_13_groups_0"), val = tensor(1)]; tensor layers_1_fc1_weight_to_fp16 = const()[name = tensor("layers_1_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(43458688)))]; tensor layers_1_fc1_bias_to_fp16 = const()[name = tensor("layers_1_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51847360)))]; tensor input_13_cast_fp16 = conv(bias = layers_1_fc1_bias_to_fp16, dilations = input_13_dilations_0, groups = input_13_groups_0, pad = input_13_pad_0, pad_type = input_13_pad_type_0, strides = input_13_strides_0, weight = layers_1_fc1_weight_to_fp16, x = input_11_cast_fp16)[name = tensor("input_13_cast_fp16")]; tensor input_15_mode_0 = const()[name = tensor("input_15_mode_0"), val = tensor("EXACT")]; tensor input_15_cast_fp16 = gelu(mode = input_15_mode_0, x = input_13_cast_fp16)[name = tensor("input_15_cast_fp16")]; tensor hidden_states_7_pad_type_0 = const()[name = tensor("hidden_states_7_pad_type_0"), val = tensor("valid")]; tensor hidden_states_7_strides_0 = const()[name = tensor("hidden_states_7_strides_0"), val = tensor([1, 1])]; tensor hidden_states_7_pad_0 = const()[name = tensor("hidden_states_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_7_dilations_0 = const()[name = tensor("hidden_states_7_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_7_groups_0 = const()[name = tensor("hidden_states_7_groups_0"), val = tensor(1)]; tensor layers_1_fc2_weight_to_fp16 = const()[name = tensor("layers_1_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51855616)))]; tensor layers_1_fc2_bias_to_fp16 = const()[name = tensor("layers_1_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(60244288)))]; tensor hidden_states_7_cast_fp16 = conv(bias = layers_1_fc2_bias_to_fp16, dilations = hidden_states_7_dilations_0, groups = hidden_states_7_groups_0, pad = hidden_states_7_pad_0, pad_type = hidden_states_7_pad_type_0, strides = hidden_states_7_strides_0, weight = layers_1_fc2_weight_to_fp16, x = input_15_cast_fp16)[name = tensor("hidden_states_7_cast_fp16")]; tensor inputs_9_cast_fp16 = add(x = inputs_7_cast_fp16, y = hidden_states_7_cast_fp16)[name = tensor("inputs_9_cast_fp16")]; tensor var_398 = const()[name = tensor("op_398"), val = tensor(3)]; tensor out_9_axes_0 = const()[name = tensor("out_9_axes_0"), val = tensor([1])]; tensor var_420_to_fp16 = const()[name = tensor("op_420_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_9_cast_fp16 = layer_norm(axes = out_9_axes_0, epsilon = var_420_to_fp16, x = inputs_9_cast_fp16)[name = tensor("out_9_cast_fp16")]; tensor obj_9_gamma_0_to_fp16 = const()[name = tensor("obj_9_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(60246400)))]; tensor obj_9_beta_0_to_fp16 = const()[name = tensor("obj_9_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(60248512)))]; tensor obj_9_epsilon_0_to_fp16 = const()[name = tensor("obj_9_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_9_cast_fp16 = batch_norm(beta = obj_9_beta_0_to_fp16, epsilon = obj_9_epsilon_0_to_fp16, gamma = obj_9_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_9_cast_fp16)[name = tensor("obj_9_cast_fp16")]; tensor query_5_pad_type_0 = const()[name = tensor("query_5_pad_type_0"), val = tensor("valid")]; tensor query_5_strides_0 = const()[name = tensor("query_5_strides_0"), val = tensor([1, 1])]; tensor query_5_pad_0 = const()[name = tensor("query_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_5_dilations_0 = const()[name = tensor("query_5_dilations_0"), val = tensor([1, 1])]; tensor query_5_groups_0 = const()[name = tensor("query_5_groups_0"), val = tensor(1)]; tensor layers_2_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_2_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(60250624)))]; tensor layers_2_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_2_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(62347840)))]; tensor query_5_cast_fp16 = conv(bias = layers_2_self_attn_q_proj_bias_to_fp16, dilations = query_5_dilations_0, groups = query_5_groups_0, pad = query_5_pad_0, pad_type = query_5_pad_type_0, strides = query_5_strides_0, weight = layers_2_self_attn_q_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor("query_5_cast_fp16")]; tensor key_5_pad_type_0 = const()[name = tensor("key_5_pad_type_0"), val = tensor("valid")]; tensor key_5_strides_0 = const()[name = tensor("key_5_strides_0"), val = tensor([1, 1])]; tensor key_5_pad_0 = const()[name = tensor("key_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_5_dilations_0 = const()[name = tensor("key_5_dilations_0"), val = tensor([1, 1])]; tensor key_5_groups_0 = const()[name = tensor("key_5_groups_0"), val = tensor(1)]; tensor layers_2_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_2_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(62349952)))]; tensor key_5_cast_fp16 = conv(dilations = key_5_dilations_0, groups = key_5_groups_0, pad = key_5_pad_0, pad_type = key_5_pad_type_0, strides = key_5_strides_0, weight = layers_2_self_attn_k_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor("key_5_cast_fp16")]; tensor value_5_pad_type_0 = const()[name = tensor("value_5_pad_type_0"), val = tensor("valid")]; tensor value_5_strides_0 = const()[name = tensor("value_5_strides_0"), val = tensor([1, 1])]; tensor value_5_pad_0 = const()[name = tensor("value_5_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_5_dilations_0 = const()[name = tensor("value_5_dilations_0"), val = tensor([1, 1])]; tensor value_5_groups_0 = const()[name = tensor("value_5_groups_0"), val = tensor(1)]; tensor layers_2_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_2_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64447168)))]; tensor layers_2_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_2_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(66544384)))]; tensor value_5_cast_fp16 = conv(bias = layers_2_self_attn_v_proj_bias_to_fp16, dilations = value_5_dilations_0, groups = value_5_groups_0, pad = value_5_pad_0, pad_type = value_5_pad_type_0, strides = value_5_strides_0, weight = layers_2_self_attn_v_proj_weight_to_fp16, x = obj_9_cast_fp16)[name = tensor("value_5_cast_fp16")]; tensor var_456 = const()[name = tensor("op_456"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_5_cast_fp16 = reshape(shape = var_456, x = query_5_cast_fp16)[name = tensor("mh_q_5_cast_fp16")]; tensor var_458_to_fp16 = const()[name = tensor("op_458_to_fp16"), val = tensor(0x1p-3)]; tensor var_459_cast_fp16 = mul(x = mh_q_5_cast_fp16, y = var_458_to_fp16)[name = tensor("op_459_cast_fp16")]; tensor var_462 = const()[name = tensor("op_462"), val = tensor([1, 16, 64, 1500])]; tensor var_463_cast_fp16 = reshape(shape = var_462, x = key_5_cast_fp16)[name = tensor("op_463_cast_fp16")]; tensor mh_w_5_transpose_x_0 = const()[name = tensor("mh_w_5_transpose_x_0"), val = tensor(true)]; tensor mh_w_5_transpose_y_0 = const()[name = tensor("mh_w_5_transpose_y_0"), val = tensor(false)]; tensor mh_w_5_cast_fp16 = matmul(transpose_x = mh_w_5_transpose_x_0, transpose_y = mh_w_5_transpose_y_0, x = var_459_cast_fp16, y = var_463_cast_fp16)[name = tensor("mh_w_5_cast_fp16")]; tensor var_466_cast_fp16 = softmax(axis = var_398, x = mh_w_5_cast_fp16)[name = tensor("op_466_cast_fp16")]; tensor var_467 = const()[name = tensor("op_467"), val = tensor([1, 16, 64, 1500])]; tensor var_468_cast_fp16 = reshape(shape = var_467, x = value_5_cast_fp16)[name = tensor("op_468_cast_fp16")]; tensor attn_5_transpose_x_0 = const()[name = tensor("attn_5_transpose_x_0"), val = tensor(false)]; tensor attn_5_transpose_y_0 = const()[name = tensor("attn_5_transpose_y_0"), val = tensor(true)]; tensor attn_5_cast_fp16 = matmul(transpose_x = attn_5_transpose_x_0, transpose_y = attn_5_transpose_y_0, x = var_468_cast_fp16, y = var_466_cast_fp16)[name = tensor("attn_5_cast_fp16")]; tensor var_471 = const()[name = tensor("op_471"), val = tensor([1, 1024, 1, 1500])]; tensor input_17_cast_fp16 = reshape(shape = var_471, x = attn_5_cast_fp16)[name = tensor("input_17_cast_fp16")]; tensor obj_11_pad_type_0 = const()[name = tensor("obj_11_pad_type_0"), val = tensor("valid")]; tensor obj_11_strides_0 = const()[name = tensor("obj_11_strides_0"), val = tensor([1, 1])]; tensor obj_11_pad_0 = const()[name = tensor("obj_11_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_11_dilations_0 = const()[name = tensor("obj_11_dilations_0"), val = tensor([1, 1])]; tensor obj_11_groups_0 = const()[name = tensor("obj_11_groups_0"), val = tensor(1)]; tensor layers_2_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_2_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(66546496)))]; tensor layers_2_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_2_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68643712)))]; tensor obj_11_cast_fp16 = conv(bias = layers_2_self_attn_o_proj_bias_to_fp16, dilations = obj_11_dilations_0, groups = obj_11_groups_0, pad = obj_11_pad_0, pad_type = obj_11_pad_type_0, strides = obj_11_strides_0, weight = layers_2_self_attn_o_proj_weight_to_fp16, x = input_17_cast_fp16)[name = tensor("obj_11_cast_fp16")]; tensor inputs_11_cast_fp16 = add(x = inputs_9_cast_fp16, y = obj_11_cast_fp16)[name = tensor("inputs_11_cast_fp16")]; tensor out_11_axes_0 = const()[name = tensor("out_11_axes_0"), val = tensor([1])]; tensor var_489_to_fp16 = const()[name = tensor("op_489_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_11_cast_fp16 = layer_norm(axes = out_11_axes_0, epsilon = var_489_to_fp16, x = inputs_11_cast_fp16)[name = tensor("out_11_cast_fp16")]; tensor input_19_gamma_0_to_fp16 = const()[name = tensor("input_19_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68645824)))]; tensor input_19_beta_0_to_fp16 = const()[name = tensor("input_19_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68647936)))]; tensor input_19_epsilon_0_to_fp16 = const()[name = tensor("input_19_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_19_cast_fp16 = batch_norm(beta = input_19_beta_0_to_fp16, epsilon = input_19_epsilon_0_to_fp16, gamma = input_19_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_11_cast_fp16)[name = tensor("input_19_cast_fp16")]; tensor input_21_pad_type_0 = const()[name = tensor("input_21_pad_type_0"), val = tensor("valid")]; tensor input_21_strides_0 = const()[name = tensor("input_21_strides_0"), val = tensor([1, 1])]; tensor input_21_pad_0 = const()[name = tensor("input_21_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_21_dilations_0 = const()[name = tensor("input_21_dilations_0"), val = tensor([1, 1])]; tensor input_21_groups_0 = const()[name = tensor("input_21_groups_0"), val = tensor(1)]; tensor layers_2_fc1_weight_to_fp16 = const()[name = tensor("layers_2_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68650048)))]; tensor layers_2_fc1_bias_to_fp16 = const()[name = tensor("layers_2_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77038720)))]; tensor input_21_cast_fp16 = conv(bias = layers_2_fc1_bias_to_fp16, dilations = input_21_dilations_0, groups = input_21_groups_0, pad = input_21_pad_0, pad_type = input_21_pad_type_0, strides = input_21_strides_0, weight = layers_2_fc1_weight_to_fp16, x = input_19_cast_fp16)[name = tensor("input_21_cast_fp16")]; tensor input_23_mode_0 = const()[name = tensor("input_23_mode_0"), val = tensor("EXACT")]; tensor input_23_cast_fp16 = gelu(mode = input_23_mode_0, x = input_21_cast_fp16)[name = tensor("input_23_cast_fp16")]; tensor hidden_states_9_pad_type_0 = const()[name = tensor("hidden_states_9_pad_type_0"), val = tensor("valid")]; tensor hidden_states_9_strides_0 = const()[name = tensor("hidden_states_9_strides_0"), val = tensor([1, 1])]; tensor hidden_states_9_pad_0 = const()[name = tensor("hidden_states_9_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_9_dilations_0 = const()[name = tensor("hidden_states_9_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_9_groups_0 = const()[name = tensor("hidden_states_9_groups_0"), val = tensor(1)]; tensor layers_2_fc2_weight_to_fp16 = const()[name = tensor("layers_2_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(77046976)))]; tensor layers_2_fc2_bias_to_fp16 = const()[name = tensor("layers_2_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(85435648)))]; tensor hidden_states_9_cast_fp16 = conv(bias = layers_2_fc2_bias_to_fp16, dilations = hidden_states_9_dilations_0, groups = hidden_states_9_groups_0, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = hidden_states_9_strides_0, weight = layers_2_fc2_weight_to_fp16, x = input_23_cast_fp16)[name = tensor("hidden_states_9_cast_fp16")]; tensor inputs_13_cast_fp16 = add(x = inputs_11_cast_fp16, y = hidden_states_9_cast_fp16)[name = tensor("inputs_13_cast_fp16")]; tensor var_518 = const()[name = tensor("op_518"), val = tensor(3)]; tensor out_13_axes_0 = const()[name = tensor("out_13_axes_0"), val = tensor([1])]; tensor var_540_to_fp16 = const()[name = tensor("op_540_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_13_cast_fp16 = layer_norm(axes = out_13_axes_0, epsilon = var_540_to_fp16, x = inputs_13_cast_fp16)[name = tensor("out_13_cast_fp16")]; tensor obj_13_gamma_0_to_fp16 = const()[name = tensor("obj_13_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(85437760)))]; tensor obj_13_beta_0_to_fp16 = const()[name = tensor("obj_13_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(85439872)))]; tensor obj_13_epsilon_0_to_fp16 = const()[name = tensor("obj_13_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_13_cast_fp16 = batch_norm(beta = obj_13_beta_0_to_fp16, epsilon = obj_13_epsilon_0_to_fp16, gamma = obj_13_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_13_cast_fp16)[name = tensor("obj_13_cast_fp16")]; tensor query_7_pad_type_0 = const()[name = tensor("query_7_pad_type_0"), val = tensor("valid")]; tensor query_7_strides_0 = const()[name = tensor("query_7_strides_0"), val = tensor([1, 1])]; tensor query_7_pad_0 = const()[name = tensor("query_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_7_dilations_0 = const()[name = tensor("query_7_dilations_0"), val = tensor([1, 1])]; tensor query_7_groups_0 = const()[name = tensor("query_7_groups_0"), val = tensor(1)]; tensor layers_3_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_3_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(85441984)))]; tensor layers_3_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_3_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(87539200)))]; tensor query_7_cast_fp16 = conv(bias = layers_3_self_attn_q_proj_bias_to_fp16, dilations = query_7_dilations_0, groups = query_7_groups_0, pad = query_7_pad_0, pad_type = query_7_pad_type_0, strides = query_7_strides_0, weight = layers_3_self_attn_q_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor("query_7_cast_fp16")]; tensor key_7_pad_type_0 = const()[name = tensor("key_7_pad_type_0"), val = tensor("valid")]; tensor key_7_strides_0 = const()[name = tensor("key_7_strides_0"), val = tensor([1, 1])]; tensor key_7_pad_0 = const()[name = tensor("key_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_7_dilations_0 = const()[name = tensor("key_7_dilations_0"), val = tensor([1, 1])]; tensor key_7_groups_0 = const()[name = tensor("key_7_groups_0"), val = tensor(1)]; tensor layers_3_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_3_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(87541312)))]; tensor key_7_cast_fp16 = conv(dilations = key_7_dilations_0, groups = key_7_groups_0, pad = key_7_pad_0, pad_type = key_7_pad_type_0, strides = key_7_strides_0, weight = layers_3_self_attn_k_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor("key_7_cast_fp16")]; tensor value_7_pad_type_0 = const()[name = tensor("value_7_pad_type_0"), val = tensor("valid")]; tensor value_7_strides_0 = const()[name = tensor("value_7_strides_0"), val = tensor([1, 1])]; tensor value_7_pad_0 = const()[name = tensor("value_7_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_7_dilations_0 = const()[name = tensor("value_7_dilations_0"), val = tensor([1, 1])]; tensor value_7_groups_0 = const()[name = tensor("value_7_groups_0"), val = tensor(1)]; tensor layers_3_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_3_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(89638528)))]; tensor layers_3_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_3_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(91735744)))]; tensor value_7_cast_fp16 = conv(bias = layers_3_self_attn_v_proj_bias_to_fp16, dilations = value_7_dilations_0, groups = value_7_groups_0, pad = value_7_pad_0, pad_type = value_7_pad_type_0, strides = value_7_strides_0, weight = layers_3_self_attn_v_proj_weight_to_fp16, x = obj_13_cast_fp16)[name = tensor("value_7_cast_fp16")]; tensor var_576 = const()[name = tensor("op_576"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_7_cast_fp16 = reshape(shape = var_576, x = query_7_cast_fp16)[name = tensor("mh_q_7_cast_fp16")]; tensor var_578_to_fp16 = const()[name = tensor("op_578_to_fp16"), val = tensor(0x1p-3)]; tensor var_579_cast_fp16 = mul(x = mh_q_7_cast_fp16, y = var_578_to_fp16)[name = tensor("op_579_cast_fp16")]; tensor var_582 = const()[name = tensor("op_582"), val = tensor([1, 16, 64, 1500])]; tensor var_583_cast_fp16 = reshape(shape = var_582, x = key_7_cast_fp16)[name = tensor("op_583_cast_fp16")]; tensor mh_w_7_transpose_x_0 = const()[name = tensor("mh_w_7_transpose_x_0"), val = tensor(true)]; tensor mh_w_7_transpose_y_0 = const()[name = tensor("mh_w_7_transpose_y_0"), val = tensor(false)]; tensor mh_w_7_cast_fp16 = matmul(transpose_x = mh_w_7_transpose_x_0, transpose_y = mh_w_7_transpose_y_0, x = var_579_cast_fp16, y = var_583_cast_fp16)[name = tensor("mh_w_7_cast_fp16")]; tensor var_586_cast_fp16 = softmax(axis = var_518, x = mh_w_7_cast_fp16)[name = tensor("op_586_cast_fp16")]; tensor var_587 = const()[name = tensor("op_587"), val = tensor([1, 16, 64, 1500])]; tensor var_588_cast_fp16 = reshape(shape = var_587, x = value_7_cast_fp16)[name = tensor("op_588_cast_fp16")]; tensor attn_7_transpose_x_0 = const()[name = tensor("attn_7_transpose_x_0"), val = tensor(false)]; tensor attn_7_transpose_y_0 = const()[name = tensor("attn_7_transpose_y_0"), val = tensor(true)]; tensor attn_7_cast_fp16 = matmul(transpose_x = attn_7_transpose_x_0, transpose_y = attn_7_transpose_y_0, x = var_588_cast_fp16, y = var_586_cast_fp16)[name = tensor("attn_7_cast_fp16")]; tensor var_591 = const()[name = tensor("op_591"), val = tensor([1, 1024, 1, 1500])]; tensor input_25_cast_fp16 = reshape(shape = var_591, x = attn_7_cast_fp16)[name = tensor("input_25_cast_fp16")]; tensor obj_15_pad_type_0 = const()[name = tensor("obj_15_pad_type_0"), val = tensor("valid")]; tensor obj_15_strides_0 = const()[name = tensor("obj_15_strides_0"), val = tensor([1, 1])]; tensor obj_15_pad_0 = const()[name = tensor("obj_15_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_15_dilations_0 = const()[name = tensor("obj_15_dilations_0"), val = tensor([1, 1])]; tensor obj_15_groups_0 = const()[name = tensor("obj_15_groups_0"), val = tensor(1)]; tensor layers_3_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_3_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(91737856)))]; tensor layers_3_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_3_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(93835072)))]; tensor obj_15_cast_fp16 = conv(bias = layers_3_self_attn_o_proj_bias_to_fp16, dilations = obj_15_dilations_0, groups = obj_15_groups_0, pad = obj_15_pad_0, pad_type = obj_15_pad_type_0, strides = obj_15_strides_0, weight = layers_3_self_attn_o_proj_weight_to_fp16, x = input_25_cast_fp16)[name = tensor("obj_15_cast_fp16")]; tensor inputs_15_cast_fp16 = add(x = inputs_13_cast_fp16, y = obj_15_cast_fp16)[name = tensor("inputs_15_cast_fp16")]; tensor out_15_axes_0 = const()[name = tensor("out_15_axes_0"), val = tensor([1])]; tensor var_609_to_fp16 = const()[name = tensor("op_609_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_15_cast_fp16 = layer_norm(axes = out_15_axes_0, epsilon = var_609_to_fp16, x = inputs_15_cast_fp16)[name = tensor("out_15_cast_fp16")]; tensor input_27_gamma_0_to_fp16 = const()[name = tensor("input_27_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(93837184)))]; tensor input_27_beta_0_to_fp16 = const()[name = tensor("input_27_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(93839296)))]; tensor input_27_epsilon_0_to_fp16 = const()[name = tensor("input_27_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_27_cast_fp16 = batch_norm(beta = input_27_beta_0_to_fp16, epsilon = input_27_epsilon_0_to_fp16, gamma = input_27_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_15_cast_fp16)[name = tensor("input_27_cast_fp16")]; tensor input_29_pad_type_0 = const()[name = tensor("input_29_pad_type_0"), val = tensor("valid")]; tensor input_29_strides_0 = const()[name = tensor("input_29_strides_0"), val = tensor([1, 1])]; tensor input_29_pad_0 = const()[name = tensor("input_29_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_29_dilations_0 = const()[name = tensor("input_29_dilations_0"), val = tensor([1, 1])]; tensor input_29_groups_0 = const()[name = tensor("input_29_groups_0"), val = tensor(1)]; tensor layers_3_fc1_weight_to_fp16 = const()[name = tensor("layers_3_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(93841408)))]; tensor layers_3_fc1_bias_to_fp16 = const()[name = tensor("layers_3_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(102230080)))]; tensor input_29_cast_fp16 = conv(bias = layers_3_fc1_bias_to_fp16, dilations = input_29_dilations_0, groups = input_29_groups_0, pad = input_29_pad_0, pad_type = input_29_pad_type_0, strides = input_29_strides_0, weight = layers_3_fc1_weight_to_fp16, x = input_27_cast_fp16)[name = tensor("input_29_cast_fp16")]; tensor input_31_mode_0 = const()[name = tensor("input_31_mode_0"), val = tensor("EXACT")]; tensor input_31_cast_fp16 = gelu(mode = input_31_mode_0, x = input_29_cast_fp16)[name = tensor("input_31_cast_fp16")]; tensor hidden_states_11_pad_type_0 = const()[name = tensor("hidden_states_11_pad_type_0"), val = tensor("valid")]; tensor hidden_states_11_strides_0 = const()[name = tensor("hidden_states_11_strides_0"), val = tensor([1, 1])]; tensor hidden_states_11_pad_0 = const()[name = tensor("hidden_states_11_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_11_dilations_0 = const()[name = tensor("hidden_states_11_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_11_groups_0 = const()[name = tensor("hidden_states_11_groups_0"), val = tensor(1)]; tensor layers_3_fc2_weight_to_fp16 = const()[name = tensor("layers_3_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(102238336)))]; tensor layers_3_fc2_bias_to_fp16 = const()[name = tensor("layers_3_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(110627008)))]; tensor hidden_states_11_cast_fp16 = conv(bias = layers_3_fc2_bias_to_fp16, dilations = hidden_states_11_dilations_0, groups = hidden_states_11_groups_0, pad = hidden_states_11_pad_0, pad_type = hidden_states_11_pad_type_0, strides = hidden_states_11_strides_0, weight = layers_3_fc2_weight_to_fp16, x = input_31_cast_fp16)[name = tensor("hidden_states_11_cast_fp16")]; tensor inputs_17_cast_fp16 = add(x = inputs_15_cast_fp16, y = hidden_states_11_cast_fp16)[name = tensor("inputs_17_cast_fp16")]; tensor var_638 = const()[name = tensor("op_638"), val = tensor(3)]; tensor out_17_axes_0 = const()[name = tensor("out_17_axes_0"), val = tensor([1])]; tensor var_660_to_fp16 = const()[name = tensor("op_660_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_17_cast_fp16 = layer_norm(axes = out_17_axes_0, epsilon = var_660_to_fp16, x = inputs_17_cast_fp16)[name = tensor("out_17_cast_fp16")]; tensor obj_17_gamma_0_to_fp16 = const()[name = tensor("obj_17_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(110629120)))]; tensor obj_17_beta_0_to_fp16 = const()[name = tensor("obj_17_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(110631232)))]; tensor obj_17_epsilon_0_to_fp16 = const()[name = tensor("obj_17_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_17_cast_fp16 = batch_norm(beta = obj_17_beta_0_to_fp16, epsilon = obj_17_epsilon_0_to_fp16, gamma = obj_17_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_17_cast_fp16)[name = tensor("obj_17_cast_fp16")]; tensor query_9_pad_type_0 = const()[name = tensor("query_9_pad_type_0"), val = tensor("valid")]; tensor query_9_strides_0 = const()[name = tensor("query_9_strides_0"), val = tensor([1, 1])]; tensor query_9_pad_0 = const()[name = tensor("query_9_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_9_dilations_0 = const()[name = tensor("query_9_dilations_0"), val = tensor([1, 1])]; tensor query_9_groups_0 = const()[name = tensor("query_9_groups_0"), val = tensor(1)]; tensor layers_4_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_4_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(110633344)))]; tensor layers_4_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_4_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(112730560)))]; tensor query_9_cast_fp16 = conv(bias = layers_4_self_attn_q_proj_bias_to_fp16, dilations = query_9_dilations_0, groups = query_9_groups_0, pad = query_9_pad_0, pad_type = query_9_pad_type_0, strides = query_9_strides_0, weight = layers_4_self_attn_q_proj_weight_to_fp16, x = obj_17_cast_fp16)[name = tensor("query_9_cast_fp16")]; tensor key_9_pad_type_0 = const()[name = tensor("key_9_pad_type_0"), val = tensor("valid")]; tensor key_9_strides_0 = const()[name = tensor("key_9_strides_0"), val = tensor([1, 1])]; tensor key_9_pad_0 = const()[name = tensor("key_9_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_9_dilations_0 = const()[name = tensor("key_9_dilations_0"), val = tensor([1, 1])]; tensor key_9_groups_0 = const()[name = tensor("key_9_groups_0"), val = tensor(1)]; tensor layers_4_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_4_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(112732672)))]; tensor key_9_cast_fp16 = conv(dilations = key_9_dilations_0, groups = key_9_groups_0, pad = key_9_pad_0, pad_type = key_9_pad_type_0, strides = key_9_strides_0, weight = layers_4_self_attn_k_proj_weight_to_fp16, x = obj_17_cast_fp16)[name = tensor("key_9_cast_fp16")]; tensor value_9_pad_type_0 = const()[name = tensor("value_9_pad_type_0"), val = tensor("valid")]; tensor value_9_strides_0 = const()[name = tensor("value_9_strides_0"), val = tensor([1, 1])]; tensor value_9_pad_0 = const()[name = tensor("value_9_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_9_dilations_0 = const()[name = tensor("value_9_dilations_0"), val = tensor([1, 1])]; tensor value_9_groups_0 = const()[name = tensor("value_9_groups_0"), val = tensor(1)]; tensor layers_4_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_4_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(114829888)))]; tensor layers_4_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_4_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(116927104)))]; tensor value_9_cast_fp16 = conv(bias = layers_4_self_attn_v_proj_bias_to_fp16, dilations = value_9_dilations_0, groups = value_9_groups_0, pad = value_9_pad_0, pad_type = value_9_pad_type_0, strides = value_9_strides_0, weight = layers_4_self_attn_v_proj_weight_to_fp16, x = obj_17_cast_fp16)[name = tensor("value_9_cast_fp16")]; tensor var_696 = const()[name = tensor("op_696"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_9_cast_fp16 = reshape(shape = var_696, x = query_9_cast_fp16)[name = tensor("mh_q_9_cast_fp16")]; tensor var_698_to_fp16 = const()[name = tensor("op_698_to_fp16"), val = tensor(0x1p-3)]; tensor var_699_cast_fp16 = mul(x = mh_q_9_cast_fp16, y = var_698_to_fp16)[name = tensor("op_699_cast_fp16")]; tensor var_702 = const()[name = tensor("op_702"), val = tensor([1, 16, 64, 1500])]; tensor var_703_cast_fp16 = reshape(shape = var_702, x = key_9_cast_fp16)[name = tensor("op_703_cast_fp16")]; tensor mh_w_9_transpose_x_0 = const()[name = tensor("mh_w_9_transpose_x_0"), val = tensor(true)]; tensor mh_w_9_transpose_y_0 = const()[name = tensor("mh_w_9_transpose_y_0"), val = tensor(false)]; tensor mh_w_9_cast_fp16 = matmul(transpose_x = mh_w_9_transpose_x_0, transpose_y = mh_w_9_transpose_y_0, x = var_699_cast_fp16, y = var_703_cast_fp16)[name = tensor("mh_w_9_cast_fp16")]; tensor var_706_cast_fp16 = softmax(axis = var_638, x = mh_w_9_cast_fp16)[name = tensor("op_706_cast_fp16")]; tensor var_707 = const()[name = tensor("op_707"), val = tensor([1, 16, 64, 1500])]; tensor var_708_cast_fp16 = reshape(shape = var_707, x = value_9_cast_fp16)[name = tensor("op_708_cast_fp16")]; tensor attn_9_transpose_x_0 = const()[name = tensor("attn_9_transpose_x_0"), val = tensor(false)]; tensor attn_9_transpose_y_0 = const()[name = tensor("attn_9_transpose_y_0"), val = tensor(true)]; tensor attn_9_cast_fp16 = matmul(transpose_x = attn_9_transpose_x_0, transpose_y = attn_9_transpose_y_0, x = var_708_cast_fp16, y = var_706_cast_fp16)[name = tensor("attn_9_cast_fp16")]; tensor var_711 = const()[name = tensor("op_711"), val = tensor([1, 1024, 1, 1500])]; tensor input_33_cast_fp16 = reshape(shape = var_711, x = attn_9_cast_fp16)[name = tensor("input_33_cast_fp16")]; tensor obj_19_pad_type_0 = const()[name = tensor("obj_19_pad_type_0"), val = tensor("valid")]; tensor obj_19_strides_0 = const()[name = tensor("obj_19_strides_0"), val = tensor([1, 1])]; tensor obj_19_pad_0 = const()[name = tensor("obj_19_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_19_dilations_0 = const()[name = tensor("obj_19_dilations_0"), val = tensor([1, 1])]; tensor obj_19_groups_0 = const()[name = tensor("obj_19_groups_0"), val = tensor(1)]; tensor layers_4_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_4_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(116929216)))]; tensor layers_4_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_4_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(119026432)))]; tensor obj_19_cast_fp16 = conv(bias = layers_4_self_attn_o_proj_bias_to_fp16, dilations = obj_19_dilations_0, groups = obj_19_groups_0, pad = obj_19_pad_0, pad_type = obj_19_pad_type_0, strides = obj_19_strides_0, weight = layers_4_self_attn_o_proj_weight_to_fp16, x = input_33_cast_fp16)[name = tensor("obj_19_cast_fp16")]; tensor inputs_19_cast_fp16 = add(x = inputs_17_cast_fp16, y = obj_19_cast_fp16)[name = tensor("inputs_19_cast_fp16")]; tensor out_19_axes_0 = const()[name = tensor("out_19_axes_0"), val = tensor([1])]; tensor var_729_to_fp16 = const()[name = tensor("op_729_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_19_cast_fp16 = layer_norm(axes = out_19_axes_0, epsilon = var_729_to_fp16, x = inputs_19_cast_fp16)[name = tensor("out_19_cast_fp16")]; tensor input_35_gamma_0_to_fp16 = const()[name = tensor("input_35_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(119028544)))]; tensor input_35_beta_0_to_fp16 = const()[name = tensor("input_35_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(119030656)))]; tensor input_35_epsilon_0_to_fp16 = const()[name = tensor("input_35_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_35_cast_fp16 = batch_norm(beta = input_35_beta_0_to_fp16, epsilon = input_35_epsilon_0_to_fp16, gamma = input_35_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_19_cast_fp16)[name = tensor("input_35_cast_fp16")]; tensor input_37_pad_type_0 = const()[name = tensor("input_37_pad_type_0"), val = tensor("valid")]; tensor input_37_strides_0 = const()[name = tensor("input_37_strides_0"), val = tensor([1, 1])]; tensor input_37_pad_0 = const()[name = tensor("input_37_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_37_dilations_0 = const()[name = tensor("input_37_dilations_0"), val = tensor([1, 1])]; tensor input_37_groups_0 = const()[name = tensor("input_37_groups_0"), val = tensor(1)]; tensor layers_4_fc1_weight_to_fp16 = const()[name = tensor("layers_4_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(119032768)))]; tensor layers_4_fc1_bias_to_fp16 = const()[name = tensor("layers_4_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(127421440)))]; tensor input_37_cast_fp16 = conv(bias = layers_4_fc1_bias_to_fp16, dilations = input_37_dilations_0, groups = input_37_groups_0, pad = input_37_pad_0, pad_type = input_37_pad_type_0, strides = input_37_strides_0, weight = layers_4_fc1_weight_to_fp16, x = input_35_cast_fp16)[name = tensor("input_37_cast_fp16")]; tensor input_39_mode_0 = const()[name = tensor("input_39_mode_0"), val = tensor("EXACT")]; tensor input_39_cast_fp16 = gelu(mode = input_39_mode_0, x = input_37_cast_fp16)[name = tensor("input_39_cast_fp16")]; tensor hidden_states_13_pad_type_0 = const()[name = tensor("hidden_states_13_pad_type_0"), val = tensor("valid")]; tensor hidden_states_13_strides_0 = const()[name = tensor("hidden_states_13_strides_0"), val = tensor([1, 1])]; tensor hidden_states_13_pad_0 = const()[name = tensor("hidden_states_13_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_13_dilations_0 = const()[name = tensor("hidden_states_13_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_13_groups_0 = const()[name = tensor("hidden_states_13_groups_0"), val = tensor(1)]; tensor layers_4_fc2_weight_to_fp16 = const()[name = tensor("layers_4_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(127429696)))]; tensor layers_4_fc2_bias_to_fp16 = const()[name = tensor("layers_4_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(135818368)))]; tensor hidden_states_13_cast_fp16 = conv(bias = layers_4_fc2_bias_to_fp16, dilations = hidden_states_13_dilations_0, groups = hidden_states_13_groups_0, pad = hidden_states_13_pad_0, pad_type = hidden_states_13_pad_type_0, strides = hidden_states_13_strides_0, weight = layers_4_fc2_weight_to_fp16, x = input_39_cast_fp16)[name = tensor("hidden_states_13_cast_fp16")]; tensor inputs_21_cast_fp16 = add(x = inputs_19_cast_fp16, y = hidden_states_13_cast_fp16)[name = tensor("inputs_21_cast_fp16")]; tensor var_758 = const()[name = tensor("op_758"), val = tensor(3)]; tensor out_21_axes_0 = const()[name = tensor("out_21_axes_0"), val = tensor([1])]; tensor var_780_to_fp16 = const()[name = tensor("op_780_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_21_cast_fp16 = layer_norm(axes = out_21_axes_0, epsilon = var_780_to_fp16, x = inputs_21_cast_fp16)[name = tensor("out_21_cast_fp16")]; tensor obj_21_gamma_0_to_fp16 = const()[name = tensor("obj_21_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(135820480)))]; tensor obj_21_beta_0_to_fp16 = const()[name = tensor("obj_21_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(135822592)))]; tensor obj_21_epsilon_0_to_fp16 = const()[name = tensor("obj_21_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_21_cast_fp16 = batch_norm(beta = obj_21_beta_0_to_fp16, epsilon = obj_21_epsilon_0_to_fp16, gamma = obj_21_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_21_cast_fp16)[name = tensor("obj_21_cast_fp16")]; tensor query_11_pad_type_0 = const()[name = tensor("query_11_pad_type_0"), val = tensor("valid")]; tensor query_11_strides_0 = const()[name = tensor("query_11_strides_0"), val = tensor([1, 1])]; tensor query_11_pad_0 = const()[name = tensor("query_11_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_11_dilations_0 = const()[name = tensor("query_11_dilations_0"), val = tensor([1, 1])]; tensor query_11_groups_0 = const()[name = tensor("query_11_groups_0"), val = tensor(1)]; tensor layers_5_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_5_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(135824704)))]; tensor layers_5_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_5_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(137921920)))]; tensor query_11_cast_fp16 = conv(bias = layers_5_self_attn_q_proj_bias_to_fp16, dilations = query_11_dilations_0, groups = query_11_groups_0, pad = query_11_pad_0, pad_type = query_11_pad_type_0, strides = query_11_strides_0, weight = layers_5_self_attn_q_proj_weight_to_fp16, x = obj_21_cast_fp16)[name = tensor("query_11_cast_fp16")]; tensor key_11_pad_type_0 = const()[name = tensor("key_11_pad_type_0"), val = tensor("valid")]; tensor key_11_strides_0 = const()[name = tensor("key_11_strides_0"), val = tensor([1, 1])]; tensor key_11_pad_0 = const()[name = tensor("key_11_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_11_dilations_0 = const()[name = tensor("key_11_dilations_0"), val = tensor([1, 1])]; tensor key_11_groups_0 = const()[name = tensor("key_11_groups_0"), val = tensor(1)]; tensor layers_5_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_5_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(137924032)))]; tensor key_11_cast_fp16 = conv(dilations = key_11_dilations_0, groups = key_11_groups_0, pad = key_11_pad_0, pad_type = key_11_pad_type_0, strides = key_11_strides_0, weight = layers_5_self_attn_k_proj_weight_to_fp16, x = obj_21_cast_fp16)[name = tensor("key_11_cast_fp16")]; tensor value_11_pad_type_0 = const()[name = tensor("value_11_pad_type_0"), val = tensor("valid")]; tensor value_11_strides_0 = const()[name = tensor("value_11_strides_0"), val = tensor([1, 1])]; tensor value_11_pad_0 = const()[name = tensor("value_11_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_11_dilations_0 = const()[name = tensor("value_11_dilations_0"), val = tensor([1, 1])]; tensor value_11_groups_0 = const()[name = tensor("value_11_groups_0"), val = tensor(1)]; tensor layers_5_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_5_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(140021248)))]; tensor layers_5_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_5_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(142118464)))]; tensor value_11_cast_fp16 = conv(bias = layers_5_self_attn_v_proj_bias_to_fp16, dilations = value_11_dilations_0, groups = value_11_groups_0, pad = value_11_pad_0, pad_type = value_11_pad_type_0, strides = value_11_strides_0, weight = layers_5_self_attn_v_proj_weight_to_fp16, x = obj_21_cast_fp16)[name = tensor("value_11_cast_fp16")]; tensor var_816 = const()[name = tensor("op_816"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_11_cast_fp16 = reshape(shape = var_816, x = query_11_cast_fp16)[name = tensor("mh_q_11_cast_fp16")]; tensor var_818_to_fp16 = const()[name = tensor("op_818_to_fp16"), val = tensor(0x1p-3)]; tensor var_819_cast_fp16 = mul(x = mh_q_11_cast_fp16, y = var_818_to_fp16)[name = tensor("op_819_cast_fp16")]; tensor var_822 = const()[name = tensor("op_822"), val = tensor([1, 16, 64, 1500])]; tensor var_823_cast_fp16 = reshape(shape = var_822, x = key_11_cast_fp16)[name = tensor("op_823_cast_fp16")]; tensor mh_w_11_transpose_x_0 = const()[name = tensor("mh_w_11_transpose_x_0"), val = tensor(true)]; tensor mh_w_11_transpose_y_0 = const()[name = tensor("mh_w_11_transpose_y_0"), val = tensor(false)]; tensor mh_w_11_cast_fp16 = matmul(transpose_x = mh_w_11_transpose_x_0, transpose_y = mh_w_11_transpose_y_0, x = var_819_cast_fp16, y = var_823_cast_fp16)[name = tensor("mh_w_11_cast_fp16")]; tensor var_826_cast_fp16 = softmax(axis = var_758, x = mh_w_11_cast_fp16)[name = tensor("op_826_cast_fp16")]; tensor var_827 = const()[name = tensor("op_827"), val = tensor([1, 16, 64, 1500])]; tensor var_828_cast_fp16 = reshape(shape = var_827, x = value_11_cast_fp16)[name = tensor("op_828_cast_fp16")]; tensor attn_11_transpose_x_0 = const()[name = tensor("attn_11_transpose_x_0"), val = tensor(false)]; tensor attn_11_transpose_y_0 = const()[name = tensor("attn_11_transpose_y_0"), val = tensor(true)]; tensor attn_11_cast_fp16 = matmul(transpose_x = attn_11_transpose_x_0, transpose_y = attn_11_transpose_y_0, x = var_828_cast_fp16, y = var_826_cast_fp16)[name = tensor("attn_11_cast_fp16")]; tensor var_831 = const()[name = tensor("op_831"), val = tensor([1, 1024, 1, 1500])]; tensor input_41_cast_fp16 = reshape(shape = var_831, x = attn_11_cast_fp16)[name = tensor("input_41_cast_fp16")]; tensor obj_23_pad_type_0 = const()[name = tensor("obj_23_pad_type_0"), val = tensor("valid")]; tensor obj_23_strides_0 = const()[name = tensor("obj_23_strides_0"), val = tensor([1, 1])]; tensor obj_23_pad_0 = const()[name = tensor("obj_23_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_23_dilations_0 = const()[name = tensor("obj_23_dilations_0"), val = tensor([1, 1])]; tensor obj_23_groups_0 = const()[name = tensor("obj_23_groups_0"), val = tensor(1)]; tensor layers_5_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_5_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(142120576)))]; tensor layers_5_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_5_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(144217792)))]; tensor obj_23_cast_fp16 = conv(bias = layers_5_self_attn_o_proj_bias_to_fp16, dilations = obj_23_dilations_0, groups = obj_23_groups_0, pad = obj_23_pad_0, pad_type = obj_23_pad_type_0, strides = obj_23_strides_0, weight = layers_5_self_attn_o_proj_weight_to_fp16, x = input_41_cast_fp16)[name = tensor("obj_23_cast_fp16")]; tensor inputs_23_cast_fp16 = add(x = inputs_21_cast_fp16, y = obj_23_cast_fp16)[name = tensor("inputs_23_cast_fp16")]; tensor out_23_axes_0 = const()[name = tensor("out_23_axes_0"), val = tensor([1])]; tensor var_849_to_fp16 = const()[name = tensor("op_849_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_23_cast_fp16 = layer_norm(axes = out_23_axes_0, epsilon = var_849_to_fp16, x = inputs_23_cast_fp16)[name = tensor("out_23_cast_fp16")]; tensor input_43_gamma_0_to_fp16 = const()[name = tensor("input_43_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(144219904)))]; tensor input_43_beta_0_to_fp16 = const()[name = tensor("input_43_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(144222016)))]; tensor input_43_epsilon_0_to_fp16 = const()[name = tensor("input_43_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_43_cast_fp16 = batch_norm(beta = input_43_beta_0_to_fp16, epsilon = input_43_epsilon_0_to_fp16, gamma = input_43_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_23_cast_fp16)[name = tensor("input_43_cast_fp16")]; tensor input_45_pad_type_0 = const()[name = tensor("input_45_pad_type_0"), val = tensor("valid")]; tensor input_45_strides_0 = const()[name = tensor("input_45_strides_0"), val = tensor([1, 1])]; tensor input_45_pad_0 = const()[name = tensor("input_45_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_45_dilations_0 = const()[name = tensor("input_45_dilations_0"), val = tensor([1, 1])]; tensor input_45_groups_0 = const()[name = tensor("input_45_groups_0"), val = tensor(1)]; tensor layers_5_fc1_weight_to_fp16 = const()[name = tensor("layers_5_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(144224128)))]; tensor layers_5_fc1_bias_to_fp16 = const()[name = tensor("layers_5_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(152612800)))]; tensor input_45_cast_fp16 = conv(bias = layers_5_fc1_bias_to_fp16, dilations = input_45_dilations_0, groups = input_45_groups_0, pad = input_45_pad_0, pad_type = input_45_pad_type_0, strides = input_45_strides_0, weight = layers_5_fc1_weight_to_fp16, x = input_43_cast_fp16)[name = tensor("input_45_cast_fp16")]; tensor input_47_mode_0 = const()[name = tensor("input_47_mode_0"), val = tensor("EXACT")]; tensor input_47_cast_fp16 = gelu(mode = input_47_mode_0, x = input_45_cast_fp16)[name = tensor("input_47_cast_fp16")]; tensor hidden_states_15_pad_type_0 = const()[name = tensor("hidden_states_15_pad_type_0"), val = tensor("valid")]; tensor hidden_states_15_strides_0 = const()[name = tensor("hidden_states_15_strides_0"), val = tensor([1, 1])]; tensor hidden_states_15_pad_0 = const()[name = tensor("hidden_states_15_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_15_dilations_0 = const()[name = tensor("hidden_states_15_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_15_groups_0 = const()[name = tensor("hidden_states_15_groups_0"), val = tensor(1)]; tensor layers_5_fc2_weight_to_fp16 = const()[name = tensor("layers_5_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(152621056)))]; tensor layers_5_fc2_bias_to_fp16 = const()[name = tensor("layers_5_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(161009728)))]; tensor hidden_states_15_cast_fp16 = conv(bias = layers_5_fc2_bias_to_fp16, dilations = hidden_states_15_dilations_0, groups = hidden_states_15_groups_0, pad = hidden_states_15_pad_0, pad_type = hidden_states_15_pad_type_0, strides = hidden_states_15_strides_0, weight = layers_5_fc2_weight_to_fp16, x = input_47_cast_fp16)[name = tensor("hidden_states_15_cast_fp16")]; tensor inputs_25_cast_fp16 = add(x = inputs_23_cast_fp16, y = hidden_states_15_cast_fp16)[name = tensor("inputs_25_cast_fp16")]; tensor var_878 = const()[name = tensor("op_878"), val = tensor(3)]; tensor out_25_axes_0 = const()[name = tensor("out_25_axes_0"), val = tensor([1])]; tensor var_900_to_fp16 = const()[name = tensor("op_900_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_25_cast_fp16 = layer_norm(axes = out_25_axes_0, epsilon = var_900_to_fp16, x = inputs_25_cast_fp16)[name = tensor("out_25_cast_fp16")]; tensor obj_25_gamma_0_to_fp16 = const()[name = tensor("obj_25_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(161011840)))]; tensor obj_25_beta_0_to_fp16 = const()[name = tensor("obj_25_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(161013952)))]; tensor obj_25_epsilon_0_to_fp16 = const()[name = tensor("obj_25_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_25_cast_fp16 = batch_norm(beta = obj_25_beta_0_to_fp16, epsilon = obj_25_epsilon_0_to_fp16, gamma = obj_25_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_25_cast_fp16)[name = tensor("obj_25_cast_fp16")]; tensor query_13_pad_type_0 = const()[name = tensor("query_13_pad_type_0"), val = tensor("valid")]; tensor query_13_strides_0 = const()[name = tensor("query_13_strides_0"), val = tensor([1, 1])]; tensor query_13_pad_0 = const()[name = tensor("query_13_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_13_dilations_0 = const()[name = tensor("query_13_dilations_0"), val = tensor([1, 1])]; tensor query_13_groups_0 = const()[name = tensor("query_13_groups_0"), val = tensor(1)]; tensor layers_6_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_6_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(161016064)))]; tensor layers_6_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_6_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(163113280)))]; tensor query_13_cast_fp16 = conv(bias = layers_6_self_attn_q_proj_bias_to_fp16, dilations = query_13_dilations_0, groups = query_13_groups_0, pad = query_13_pad_0, pad_type = query_13_pad_type_0, strides = query_13_strides_0, weight = layers_6_self_attn_q_proj_weight_to_fp16, x = obj_25_cast_fp16)[name = tensor("query_13_cast_fp16")]; tensor key_13_pad_type_0 = const()[name = tensor("key_13_pad_type_0"), val = tensor("valid")]; tensor key_13_strides_0 = const()[name = tensor("key_13_strides_0"), val = tensor([1, 1])]; tensor key_13_pad_0 = const()[name = tensor("key_13_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_13_dilations_0 = const()[name = tensor("key_13_dilations_0"), val = tensor([1, 1])]; tensor key_13_groups_0 = const()[name = tensor("key_13_groups_0"), val = tensor(1)]; tensor layers_6_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_6_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(163115392)))]; tensor key_13_cast_fp16 = conv(dilations = key_13_dilations_0, groups = key_13_groups_0, pad = key_13_pad_0, pad_type = key_13_pad_type_0, strides = key_13_strides_0, weight = layers_6_self_attn_k_proj_weight_to_fp16, x = obj_25_cast_fp16)[name = tensor("key_13_cast_fp16")]; tensor value_13_pad_type_0 = const()[name = tensor("value_13_pad_type_0"), val = tensor("valid")]; tensor value_13_strides_0 = const()[name = tensor("value_13_strides_0"), val = tensor([1, 1])]; tensor value_13_pad_0 = const()[name = tensor("value_13_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_13_dilations_0 = const()[name = tensor("value_13_dilations_0"), val = tensor([1, 1])]; tensor value_13_groups_0 = const()[name = tensor("value_13_groups_0"), val = tensor(1)]; tensor layers_6_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_6_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(165212608)))]; tensor layers_6_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_6_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(167309824)))]; tensor value_13_cast_fp16 = conv(bias = layers_6_self_attn_v_proj_bias_to_fp16, dilations = value_13_dilations_0, groups = value_13_groups_0, pad = value_13_pad_0, pad_type = value_13_pad_type_0, strides = value_13_strides_0, weight = layers_6_self_attn_v_proj_weight_to_fp16, x = obj_25_cast_fp16)[name = tensor("value_13_cast_fp16")]; tensor var_936 = const()[name = tensor("op_936"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_13_cast_fp16 = reshape(shape = var_936, x = query_13_cast_fp16)[name = tensor("mh_q_13_cast_fp16")]; tensor var_938_to_fp16 = const()[name = tensor("op_938_to_fp16"), val = tensor(0x1p-3)]; tensor var_939_cast_fp16 = mul(x = mh_q_13_cast_fp16, y = var_938_to_fp16)[name = tensor("op_939_cast_fp16")]; tensor var_942 = const()[name = tensor("op_942"), val = tensor([1, 16, 64, 1500])]; tensor var_943_cast_fp16 = reshape(shape = var_942, x = key_13_cast_fp16)[name = tensor("op_943_cast_fp16")]; tensor mh_w_13_transpose_x_0 = const()[name = tensor("mh_w_13_transpose_x_0"), val = tensor(true)]; tensor mh_w_13_transpose_y_0 = const()[name = tensor("mh_w_13_transpose_y_0"), val = tensor(false)]; tensor mh_w_13_cast_fp16 = matmul(transpose_x = mh_w_13_transpose_x_0, transpose_y = mh_w_13_transpose_y_0, x = var_939_cast_fp16, y = var_943_cast_fp16)[name = tensor("mh_w_13_cast_fp16")]; tensor var_946_cast_fp16 = softmax(axis = var_878, x = mh_w_13_cast_fp16)[name = tensor("op_946_cast_fp16")]; tensor var_947 = const()[name = tensor("op_947"), val = tensor([1, 16, 64, 1500])]; tensor var_948_cast_fp16 = reshape(shape = var_947, x = value_13_cast_fp16)[name = tensor("op_948_cast_fp16")]; tensor attn_13_transpose_x_0 = const()[name = tensor("attn_13_transpose_x_0"), val = tensor(false)]; tensor attn_13_transpose_y_0 = const()[name = tensor("attn_13_transpose_y_0"), val = tensor(true)]; tensor attn_13_cast_fp16 = matmul(transpose_x = attn_13_transpose_x_0, transpose_y = attn_13_transpose_y_0, x = var_948_cast_fp16, y = var_946_cast_fp16)[name = tensor("attn_13_cast_fp16")]; tensor var_951 = const()[name = tensor("op_951"), val = tensor([1, 1024, 1, 1500])]; tensor input_49_cast_fp16 = reshape(shape = var_951, x = attn_13_cast_fp16)[name = tensor("input_49_cast_fp16")]; tensor obj_27_pad_type_0 = const()[name = tensor("obj_27_pad_type_0"), val = tensor("valid")]; tensor obj_27_strides_0 = const()[name = tensor("obj_27_strides_0"), val = tensor([1, 1])]; tensor obj_27_pad_0 = const()[name = tensor("obj_27_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_27_dilations_0 = const()[name = tensor("obj_27_dilations_0"), val = tensor([1, 1])]; tensor obj_27_groups_0 = const()[name = tensor("obj_27_groups_0"), val = tensor(1)]; tensor layers_6_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_6_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(167311936)))]; tensor layers_6_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_6_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(169409152)))]; tensor obj_27_cast_fp16 = conv(bias = layers_6_self_attn_o_proj_bias_to_fp16, dilations = obj_27_dilations_0, groups = obj_27_groups_0, pad = obj_27_pad_0, pad_type = obj_27_pad_type_0, strides = obj_27_strides_0, weight = layers_6_self_attn_o_proj_weight_to_fp16, x = input_49_cast_fp16)[name = tensor("obj_27_cast_fp16")]; tensor inputs_27_cast_fp16 = add(x = inputs_25_cast_fp16, y = obj_27_cast_fp16)[name = tensor("inputs_27_cast_fp16")]; tensor out_27_axes_0 = const()[name = tensor("out_27_axes_0"), val = tensor([1])]; tensor var_969_to_fp16 = const()[name = tensor("op_969_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_27_cast_fp16 = layer_norm(axes = out_27_axes_0, epsilon = var_969_to_fp16, x = inputs_27_cast_fp16)[name = tensor("out_27_cast_fp16")]; tensor input_51_gamma_0_to_fp16 = const()[name = tensor("input_51_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(169411264)))]; tensor input_51_beta_0_to_fp16 = const()[name = tensor("input_51_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(169413376)))]; tensor input_51_epsilon_0_to_fp16 = const()[name = tensor("input_51_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_51_cast_fp16 = batch_norm(beta = input_51_beta_0_to_fp16, epsilon = input_51_epsilon_0_to_fp16, gamma = input_51_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_27_cast_fp16)[name = tensor("input_51_cast_fp16")]; tensor input_53_pad_type_0 = const()[name = tensor("input_53_pad_type_0"), val = tensor("valid")]; tensor input_53_strides_0 = const()[name = tensor("input_53_strides_0"), val = tensor([1, 1])]; tensor input_53_pad_0 = const()[name = tensor("input_53_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_53_dilations_0 = const()[name = tensor("input_53_dilations_0"), val = tensor([1, 1])]; tensor input_53_groups_0 = const()[name = tensor("input_53_groups_0"), val = tensor(1)]; tensor layers_6_fc1_weight_to_fp16 = const()[name = tensor("layers_6_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(169415488)))]; tensor layers_6_fc1_bias_to_fp16 = const()[name = tensor("layers_6_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(177804160)))]; tensor input_53_cast_fp16 = conv(bias = layers_6_fc1_bias_to_fp16, dilations = input_53_dilations_0, groups = input_53_groups_0, pad = input_53_pad_0, pad_type = input_53_pad_type_0, strides = input_53_strides_0, weight = layers_6_fc1_weight_to_fp16, x = input_51_cast_fp16)[name = tensor("input_53_cast_fp16")]; tensor input_55_mode_0 = const()[name = tensor("input_55_mode_0"), val = tensor("EXACT")]; tensor input_55_cast_fp16 = gelu(mode = input_55_mode_0, x = input_53_cast_fp16)[name = tensor("input_55_cast_fp16")]; tensor hidden_states_17_pad_type_0 = const()[name = tensor("hidden_states_17_pad_type_0"), val = tensor("valid")]; tensor hidden_states_17_strides_0 = const()[name = tensor("hidden_states_17_strides_0"), val = tensor([1, 1])]; tensor hidden_states_17_pad_0 = const()[name = tensor("hidden_states_17_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_17_dilations_0 = const()[name = tensor("hidden_states_17_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_17_groups_0 = const()[name = tensor("hidden_states_17_groups_0"), val = tensor(1)]; tensor layers_6_fc2_weight_to_fp16 = const()[name = tensor("layers_6_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(177812416)))]; tensor layers_6_fc2_bias_to_fp16 = const()[name = tensor("layers_6_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(186201088)))]; tensor hidden_states_17_cast_fp16 = conv(bias = layers_6_fc2_bias_to_fp16, dilations = hidden_states_17_dilations_0, groups = hidden_states_17_groups_0, pad = hidden_states_17_pad_0, pad_type = hidden_states_17_pad_type_0, strides = hidden_states_17_strides_0, weight = layers_6_fc2_weight_to_fp16, x = input_55_cast_fp16)[name = tensor("hidden_states_17_cast_fp16")]; tensor inputs_29_cast_fp16 = add(x = inputs_27_cast_fp16, y = hidden_states_17_cast_fp16)[name = tensor("inputs_29_cast_fp16")]; tensor var_998 = const()[name = tensor("op_998"), val = tensor(3)]; tensor out_29_axes_0 = const()[name = tensor("out_29_axes_0"), val = tensor([1])]; tensor var_1020_to_fp16 = const()[name = tensor("op_1020_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_29_cast_fp16 = layer_norm(axes = out_29_axes_0, epsilon = var_1020_to_fp16, x = inputs_29_cast_fp16)[name = tensor("out_29_cast_fp16")]; tensor obj_29_gamma_0_to_fp16 = const()[name = tensor("obj_29_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(186203200)))]; tensor obj_29_beta_0_to_fp16 = const()[name = tensor("obj_29_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(186205312)))]; tensor obj_29_epsilon_0_to_fp16 = const()[name = tensor("obj_29_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_29_cast_fp16 = batch_norm(beta = obj_29_beta_0_to_fp16, epsilon = obj_29_epsilon_0_to_fp16, gamma = obj_29_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_29_cast_fp16)[name = tensor("obj_29_cast_fp16")]; tensor query_15_pad_type_0 = const()[name = tensor("query_15_pad_type_0"), val = tensor("valid")]; tensor query_15_strides_0 = const()[name = tensor("query_15_strides_0"), val = tensor([1, 1])]; tensor query_15_pad_0 = const()[name = tensor("query_15_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_15_dilations_0 = const()[name = tensor("query_15_dilations_0"), val = tensor([1, 1])]; tensor query_15_groups_0 = const()[name = tensor("query_15_groups_0"), val = tensor(1)]; tensor layers_7_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_7_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(186207424)))]; tensor layers_7_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_7_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(188304640)))]; tensor query_15_cast_fp16 = conv(bias = layers_7_self_attn_q_proj_bias_to_fp16, dilations = query_15_dilations_0, groups = query_15_groups_0, pad = query_15_pad_0, pad_type = query_15_pad_type_0, strides = query_15_strides_0, weight = layers_7_self_attn_q_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor("query_15_cast_fp16")]; tensor key_15_pad_type_0 = const()[name = tensor("key_15_pad_type_0"), val = tensor("valid")]; tensor key_15_strides_0 = const()[name = tensor("key_15_strides_0"), val = tensor([1, 1])]; tensor key_15_pad_0 = const()[name = tensor("key_15_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_15_dilations_0 = const()[name = tensor("key_15_dilations_0"), val = tensor([1, 1])]; tensor key_15_groups_0 = const()[name = tensor("key_15_groups_0"), val = tensor(1)]; tensor layers_7_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_7_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(188306752)))]; tensor key_15_cast_fp16 = conv(dilations = key_15_dilations_0, groups = key_15_groups_0, pad = key_15_pad_0, pad_type = key_15_pad_type_0, strides = key_15_strides_0, weight = layers_7_self_attn_k_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor("key_15_cast_fp16")]; tensor value_15_pad_type_0 = const()[name = tensor("value_15_pad_type_0"), val = tensor("valid")]; tensor value_15_strides_0 = const()[name = tensor("value_15_strides_0"), val = tensor([1, 1])]; tensor value_15_pad_0 = const()[name = tensor("value_15_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_15_dilations_0 = const()[name = tensor("value_15_dilations_0"), val = tensor([1, 1])]; tensor value_15_groups_0 = const()[name = tensor("value_15_groups_0"), val = tensor(1)]; tensor layers_7_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_7_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(190403968)))]; tensor layers_7_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_7_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(192501184)))]; tensor value_15_cast_fp16 = conv(bias = layers_7_self_attn_v_proj_bias_to_fp16, dilations = value_15_dilations_0, groups = value_15_groups_0, pad = value_15_pad_0, pad_type = value_15_pad_type_0, strides = value_15_strides_0, weight = layers_7_self_attn_v_proj_weight_to_fp16, x = obj_29_cast_fp16)[name = tensor("value_15_cast_fp16")]; tensor var_1056 = const()[name = tensor("op_1056"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_15_cast_fp16 = reshape(shape = var_1056, x = query_15_cast_fp16)[name = tensor("mh_q_15_cast_fp16")]; tensor var_1058_to_fp16 = const()[name = tensor("op_1058_to_fp16"), val = tensor(0x1p-3)]; tensor var_1059_cast_fp16 = mul(x = mh_q_15_cast_fp16, y = var_1058_to_fp16)[name = tensor("op_1059_cast_fp16")]; tensor var_1062 = const()[name = tensor("op_1062"), val = tensor([1, 16, 64, 1500])]; tensor var_1063_cast_fp16 = reshape(shape = var_1062, x = key_15_cast_fp16)[name = tensor("op_1063_cast_fp16")]; tensor mh_w_15_transpose_x_0 = const()[name = tensor("mh_w_15_transpose_x_0"), val = tensor(true)]; tensor mh_w_15_transpose_y_0 = const()[name = tensor("mh_w_15_transpose_y_0"), val = tensor(false)]; tensor mh_w_15_cast_fp16 = matmul(transpose_x = mh_w_15_transpose_x_0, transpose_y = mh_w_15_transpose_y_0, x = var_1059_cast_fp16, y = var_1063_cast_fp16)[name = tensor("mh_w_15_cast_fp16")]; tensor var_1066_cast_fp16 = softmax(axis = var_998, x = mh_w_15_cast_fp16)[name = tensor("op_1066_cast_fp16")]; tensor var_1067 = const()[name = tensor("op_1067"), val = tensor([1, 16, 64, 1500])]; tensor var_1068_cast_fp16 = reshape(shape = var_1067, x = value_15_cast_fp16)[name = tensor("op_1068_cast_fp16")]; tensor attn_15_transpose_x_0 = const()[name = tensor("attn_15_transpose_x_0"), val = tensor(false)]; tensor attn_15_transpose_y_0 = const()[name = tensor("attn_15_transpose_y_0"), val = tensor(true)]; tensor attn_15_cast_fp16 = matmul(transpose_x = attn_15_transpose_x_0, transpose_y = attn_15_transpose_y_0, x = var_1068_cast_fp16, y = var_1066_cast_fp16)[name = tensor("attn_15_cast_fp16")]; tensor var_1071 = const()[name = tensor("op_1071"), val = tensor([1, 1024, 1, 1500])]; tensor input_57_cast_fp16 = reshape(shape = var_1071, x = attn_15_cast_fp16)[name = tensor("input_57_cast_fp16")]; tensor obj_31_pad_type_0 = const()[name = tensor("obj_31_pad_type_0"), val = tensor("valid")]; tensor obj_31_strides_0 = const()[name = tensor("obj_31_strides_0"), val = tensor([1, 1])]; tensor obj_31_pad_0 = const()[name = tensor("obj_31_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_31_dilations_0 = const()[name = tensor("obj_31_dilations_0"), val = tensor([1, 1])]; tensor obj_31_groups_0 = const()[name = tensor("obj_31_groups_0"), val = tensor(1)]; tensor layers_7_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_7_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(192503296)))]; tensor layers_7_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_7_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(194600512)))]; tensor obj_31_cast_fp16 = conv(bias = layers_7_self_attn_o_proj_bias_to_fp16, dilations = obj_31_dilations_0, groups = obj_31_groups_0, pad = obj_31_pad_0, pad_type = obj_31_pad_type_0, strides = obj_31_strides_0, weight = layers_7_self_attn_o_proj_weight_to_fp16, x = input_57_cast_fp16)[name = tensor("obj_31_cast_fp16")]; tensor inputs_31_cast_fp16 = add(x = inputs_29_cast_fp16, y = obj_31_cast_fp16)[name = tensor("inputs_31_cast_fp16")]; tensor out_31_axes_0 = const()[name = tensor("out_31_axes_0"), val = tensor([1])]; tensor var_1089_to_fp16 = const()[name = tensor("op_1089_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_31_cast_fp16 = layer_norm(axes = out_31_axes_0, epsilon = var_1089_to_fp16, x = inputs_31_cast_fp16)[name = tensor("out_31_cast_fp16")]; tensor input_59_gamma_0_to_fp16 = const()[name = tensor("input_59_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(194602624)))]; tensor input_59_beta_0_to_fp16 = const()[name = tensor("input_59_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(194604736)))]; tensor input_59_epsilon_0_to_fp16 = const()[name = tensor("input_59_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_59_cast_fp16 = batch_norm(beta = input_59_beta_0_to_fp16, epsilon = input_59_epsilon_0_to_fp16, gamma = input_59_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_31_cast_fp16)[name = tensor("input_59_cast_fp16")]; tensor input_61_pad_type_0 = const()[name = tensor("input_61_pad_type_0"), val = tensor("valid")]; tensor input_61_strides_0 = const()[name = tensor("input_61_strides_0"), val = tensor([1, 1])]; tensor input_61_pad_0 = const()[name = tensor("input_61_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_61_dilations_0 = const()[name = tensor("input_61_dilations_0"), val = tensor([1, 1])]; tensor input_61_groups_0 = const()[name = tensor("input_61_groups_0"), val = tensor(1)]; tensor layers_7_fc1_weight_to_fp16 = const()[name = tensor("layers_7_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(194606848)))]; tensor layers_7_fc1_bias_to_fp16 = const()[name = tensor("layers_7_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(202995520)))]; tensor input_61_cast_fp16 = conv(bias = layers_7_fc1_bias_to_fp16, dilations = input_61_dilations_0, groups = input_61_groups_0, pad = input_61_pad_0, pad_type = input_61_pad_type_0, strides = input_61_strides_0, weight = layers_7_fc1_weight_to_fp16, x = input_59_cast_fp16)[name = tensor("input_61_cast_fp16")]; tensor input_63_mode_0 = const()[name = tensor("input_63_mode_0"), val = tensor("EXACT")]; tensor input_63_cast_fp16 = gelu(mode = input_63_mode_0, x = input_61_cast_fp16)[name = tensor("input_63_cast_fp16")]; tensor hidden_states_19_pad_type_0 = const()[name = tensor("hidden_states_19_pad_type_0"), val = tensor("valid")]; tensor hidden_states_19_strides_0 = const()[name = tensor("hidden_states_19_strides_0"), val = tensor([1, 1])]; tensor hidden_states_19_pad_0 = const()[name = tensor("hidden_states_19_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_19_dilations_0 = const()[name = tensor("hidden_states_19_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_19_groups_0 = const()[name = tensor("hidden_states_19_groups_0"), val = tensor(1)]; tensor layers_7_fc2_weight_to_fp16 = const()[name = tensor("layers_7_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(203003776)))]; tensor layers_7_fc2_bias_to_fp16 = const()[name = tensor("layers_7_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(211392448)))]; tensor hidden_states_19_cast_fp16 = conv(bias = layers_7_fc2_bias_to_fp16, dilations = hidden_states_19_dilations_0, groups = hidden_states_19_groups_0, pad = hidden_states_19_pad_0, pad_type = hidden_states_19_pad_type_0, strides = hidden_states_19_strides_0, weight = layers_7_fc2_weight_to_fp16, x = input_63_cast_fp16)[name = tensor("hidden_states_19_cast_fp16")]; tensor inputs_33_cast_fp16 = add(x = inputs_31_cast_fp16, y = hidden_states_19_cast_fp16)[name = tensor("inputs_33_cast_fp16")]; tensor var_1118 = const()[name = tensor("op_1118"), val = tensor(3)]; tensor out_33_axes_0 = const()[name = tensor("out_33_axes_0"), val = tensor([1])]; tensor var_1140_to_fp16 = const()[name = tensor("op_1140_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_33_cast_fp16 = layer_norm(axes = out_33_axes_0, epsilon = var_1140_to_fp16, x = inputs_33_cast_fp16)[name = tensor("out_33_cast_fp16")]; tensor obj_33_gamma_0_to_fp16 = const()[name = tensor("obj_33_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(211394560)))]; tensor obj_33_beta_0_to_fp16 = const()[name = tensor("obj_33_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(211396672)))]; tensor obj_33_epsilon_0_to_fp16 = const()[name = tensor("obj_33_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_33_cast_fp16 = batch_norm(beta = obj_33_beta_0_to_fp16, epsilon = obj_33_epsilon_0_to_fp16, gamma = obj_33_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_33_cast_fp16)[name = tensor("obj_33_cast_fp16")]; tensor query_17_pad_type_0 = const()[name = tensor("query_17_pad_type_0"), val = tensor("valid")]; tensor query_17_strides_0 = const()[name = tensor("query_17_strides_0"), val = tensor([1, 1])]; tensor query_17_pad_0 = const()[name = tensor("query_17_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_17_dilations_0 = const()[name = tensor("query_17_dilations_0"), val = tensor([1, 1])]; tensor query_17_groups_0 = const()[name = tensor("query_17_groups_0"), val = tensor(1)]; tensor layers_8_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_8_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(211398784)))]; tensor layers_8_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_8_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(213496000)))]; tensor query_17_cast_fp16 = conv(bias = layers_8_self_attn_q_proj_bias_to_fp16, dilations = query_17_dilations_0, groups = query_17_groups_0, pad = query_17_pad_0, pad_type = query_17_pad_type_0, strides = query_17_strides_0, weight = layers_8_self_attn_q_proj_weight_to_fp16, x = obj_33_cast_fp16)[name = tensor("query_17_cast_fp16")]; tensor key_17_pad_type_0 = const()[name = tensor("key_17_pad_type_0"), val = tensor("valid")]; tensor key_17_strides_0 = const()[name = tensor("key_17_strides_0"), val = tensor([1, 1])]; tensor key_17_pad_0 = const()[name = tensor("key_17_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_17_dilations_0 = const()[name = tensor("key_17_dilations_0"), val = tensor([1, 1])]; tensor key_17_groups_0 = const()[name = tensor("key_17_groups_0"), val = tensor(1)]; tensor layers_8_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_8_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(213498112)))]; tensor key_17_cast_fp16 = conv(dilations = key_17_dilations_0, groups = key_17_groups_0, pad = key_17_pad_0, pad_type = key_17_pad_type_0, strides = key_17_strides_0, weight = layers_8_self_attn_k_proj_weight_to_fp16, x = obj_33_cast_fp16)[name = tensor("key_17_cast_fp16")]; tensor value_17_pad_type_0 = const()[name = tensor("value_17_pad_type_0"), val = tensor("valid")]; tensor value_17_strides_0 = const()[name = tensor("value_17_strides_0"), val = tensor([1, 1])]; tensor value_17_pad_0 = const()[name = tensor("value_17_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_17_dilations_0 = const()[name = tensor("value_17_dilations_0"), val = tensor([1, 1])]; tensor value_17_groups_0 = const()[name = tensor("value_17_groups_0"), val = tensor(1)]; tensor layers_8_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_8_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(215595328)))]; tensor layers_8_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_8_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(217692544)))]; tensor value_17_cast_fp16 = conv(bias = layers_8_self_attn_v_proj_bias_to_fp16, dilations = value_17_dilations_0, groups = value_17_groups_0, pad = value_17_pad_0, pad_type = value_17_pad_type_0, strides = value_17_strides_0, weight = layers_8_self_attn_v_proj_weight_to_fp16, x = obj_33_cast_fp16)[name = tensor("value_17_cast_fp16")]; tensor var_1176 = const()[name = tensor("op_1176"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_17_cast_fp16 = reshape(shape = var_1176, x = query_17_cast_fp16)[name = tensor("mh_q_17_cast_fp16")]; tensor var_1178_to_fp16 = const()[name = tensor("op_1178_to_fp16"), val = tensor(0x1p-3)]; tensor var_1179_cast_fp16 = mul(x = mh_q_17_cast_fp16, y = var_1178_to_fp16)[name = tensor("op_1179_cast_fp16")]; tensor var_1182 = const()[name = tensor("op_1182"), val = tensor([1, 16, 64, 1500])]; tensor var_1183_cast_fp16 = reshape(shape = var_1182, x = key_17_cast_fp16)[name = tensor("op_1183_cast_fp16")]; tensor mh_w_17_transpose_x_0 = const()[name = tensor("mh_w_17_transpose_x_0"), val = tensor(true)]; tensor mh_w_17_transpose_y_0 = const()[name = tensor("mh_w_17_transpose_y_0"), val = tensor(false)]; tensor mh_w_17_cast_fp16 = matmul(transpose_x = mh_w_17_transpose_x_0, transpose_y = mh_w_17_transpose_y_0, x = var_1179_cast_fp16, y = var_1183_cast_fp16)[name = tensor("mh_w_17_cast_fp16")]; tensor var_1186_cast_fp16 = softmax(axis = var_1118, x = mh_w_17_cast_fp16)[name = tensor("op_1186_cast_fp16")]; tensor var_1187 = const()[name = tensor("op_1187"), val = tensor([1, 16, 64, 1500])]; tensor var_1188_cast_fp16 = reshape(shape = var_1187, x = value_17_cast_fp16)[name = tensor("op_1188_cast_fp16")]; tensor attn_17_transpose_x_0 = const()[name = tensor("attn_17_transpose_x_0"), val = tensor(false)]; tensor attn_17_transpose_y_0 = const()[name = tensor("attn_17_transpose_y_0"), val = tensor(true)]; tensor attn_17_cast_fp16 = matmul(transpose_x = attn_17_transpose_x_0, transpose_y = attn_17_transpose_y_0, x = var_1188_cast_fp16, y = var_1186_cast_fp16)[name = tensor("attn_17_cast_fp16")]; tensor var_1191 = const()[name = tensor("op_1191"), val = tensor([1, 1024, 1, 1500])]; tensor input_65_cast_fp16 = reshape(shape = var_1191, x = attn_17_cast_fp16)[name = tensor("input_65_cast_fp16")]; tensor obj_35_pad_type_0 = const()[name = tensor("obj_35_pad_type_0"), val = tensor("valid")]; tensor obj_35_strides_0 = const()[name = tensor("obj_35_strides_0"), val = tensor([1, 1])]; tensor obj_35_pad_0 = const()[name = tensor("obj_35_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_35_dilations_0 = const()[name = tensor("obj_35_dilations_0"), val = tensor([1, 1])]; tensor obj_35_groups_0 = const()[name = tensor("obj_35_groups_0"), val = tensor(1)]; tensor layers_8_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_8_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(217694656)))]; tensor layers_8_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_8_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(219791872)))]; tensor obj_35_cast_fp16 = conv(bias = layers_8_self_attn_o_proj_bias_to_fp16, dilations = obj_35_dilations_0, groups = obj_35_groups_0, pad = obj_35_pad_0, pad_type = obj_35_pad_type_0, strides = obj_35_strides_0, weight = layers_8_self_attn_o_proj_weight_to_fp16, x = input_65_cast_fp16)[name = tensor("obj_35_cast_fp16")]; tensor inputs_35_cast_fp16 = add(x = inputs_33_cast_fp16, y = obj_35_cast_fp16)[name = tensor("inputs_35_cast_fp16")]; tensor out_35_axes_0 = const()[name = tensor("out_35_axes_0"), val = tensor([1])]; tensor var_1209_to_fp16 = const()[name = tensor("op_1209_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_35_cast_fp16 = layer_norm(axes = out_35_axes_0, epsilon = var_1209_to_fp16, x = inputs_35_cast_fp16)[name = tensor("out_35_cast_fp16")]; tensor input_67_gamma_0_to_fp16 = const()[name = tensor("input_67_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(219793984)))]; tensor input_67_beta_0_to_fp16 = const()[name = tensor("input_67_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(219796096)))]; tensor input_67_epsilon_0_to_fp16 = const()[name = tensor("input_67_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_67_cast_fp16 = batch_norm(beta = input_67_beta_0_to_fp16, epsilon = input_67_epsilon_0_to_fp16, gamma = input_67_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_35_cast_fp16)[name = tensor("input_67_cast_fp16")]; tensor input_69_pad_type_0 = const()[name = tensor("input_69_pad_type_0"), val = tensor("valid")]; tensor input_69_strides_0 = const()[name = tensor("input_69_strides_0"), val = tensor([1, 1])]; tensor input_69_pad_0 = const()[name = tensor("input_69_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_69_dilations_0 = const()[name = tensor("input_69_dilations_0"), val = tensor([1, 1])]; tensor input_69_groups_0 = const()[name = tensor("input_69_groups_0"), val = tensor(1)]; tensor layers_8_fc1_weight_to_fp16 = const()[name = tensor("layers_8_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(219798208)))]; tensor layers_8_fc1_bias_to_fp16 = const()[name = tensor("layers_8_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(228186880)))]; tensor input_69_cast_fp16 = conv(bias = layers_8_fc1_bias_to_fp16, dilations = input_69_dilations_0, groups = input_69_groups_0, pad = input_69_pad_0, pad_type = input_69_pad_type_0, strides = input_69_strides_0, weight = layers_8_fc1_weight_to_fp16, x = input_67_cast_fp16)[name = tensor("input_69_cast_fp16")]; tensor input_71_mode_0 = const()[name = tensor("input_71_mode_0"), val = tensor("EXACT")]; tensor input_71_cast_fp16 = gelu(mode = input_71_mode_0, x = input_69_cast_fp16)[name = tensor("input_71_cast_fp16")]; tensor hidden_states_21_pad_type_0 = const()[name = tensor("hidden_states_21_pad_type_0"), val = tensor("valid")]; tensor hidden_states_21_strides_0 = const()[name = tensor("hidden_states_21_strides_0"), val = tensor([1, 1])]; tensor hidden_states_21_pad_0 = const()[name = tensor("hidden_states_21_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_21_dilations_0 = const()[name = tensor("hidden_states_21_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_21_groups_0 = const()[name = tensor("hidden_states_21_groups_0"), val = tensor(1)]; tensor layers_8_fc2_weight_to_fp16 = const()[name = tensor("layers_8_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(228195136)))]; tensor layers_8_fc2_bias_to_fp16 = const()[name = tensor("layers_8_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(236583808)))]; tensor hidden_states_21_cast_fp16 = conv(bias = layers_8_fc2_bias_to_fp16, dilations = hidden_states_21_dilations_0, groups = hidden_states_21_groups_0, pad = hidden_states_21_pad_0, pad_type = hidden_states_21_pad_type_0, strides = hidden_states_21_strides_0, weight = layers_8_fc2_weight_to_fp16, x = input_71_cast_fp16)[name = tensor("hidden_states_21_cast_fp16")]; tensor inputs_37_cast_fp16 = add(x = inputs_35_cast_fp16, y = hidden_states_21_cast_fp16)[name = tensor("inputs_37_cast_fp16")]; tensor var_1238 = const()[name = tensor("op_1238"), val = tensor(3)]; tensor out_37_axes_0 = const()[name = tensor("out_37_axes_0"), val = tensor([1])]; tensor var_1260_to_fp16 = const()[name = tensor("op_1260_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_37_cast_fp16 = layer_norm(axes = out_37_axes_0, epsilon = var_1260_to_fp16, x = inputs_37_cast_fp16)[name = tensor("out_37_cast_fp16")]; tensor obj_37_gamma_0_to_fp16 = const()[name = tensor("obj_37_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(236585920)))]; tensor obj_37_beta_0_to_fp16 = const()[name = tensor("obj_37_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(236588032)))]; tensor obj_37_epsilon_0_to_fp16 = const()[name = tensor("obj_37_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_37_cast_fp16 = batch_norm(beta = obj_37_beta_0_to_fp16, epsilon = obj_37_epsilon_0_to_fp16, gamma = obj_37_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_37_cast_fp16)[name = tensor("obj_37_cast_fp16")]; tensor query_19_pad_type_0 = const()[name = tensor("query_19_pad_type_0"), val = tensor("valid")]; tensor query_19_strides_0 = const()[name = tensor("query_19_strides_0"), val = tensor([1, 1])]; tensor query_19_pad_0 = const()[name = tensor("query_19_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_19_dilations_0 = const()[name = tensor("query_19_dilations_0"), val = tensor([1, 1])]; tensor query_19_groups_0 = const()[name = tensor("query_19_groups_0"), val = tensor(1)]; tensor layers_9_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_9_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(236590144)))]; tensor layers_9_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_9_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(238687360)))]; tensor query_19_cast_fp16 = conv(bias = layers_9_self_attn_q_proj_bias_to_fp16, dilations = query_19_dilations_0, groups = query_19_groups_0, pad = query_19_pad_0, pad_type = query_19_pad_type_0, strides = query_19_strides_0, weight = layers_9_self_attn_q_proj_weight_to_fp16, x = obj_37_cast_fp16)[name = tensor("query_19_cast_fp16")]; tensor key_19_pad_type_0 = const()[name = tensor("key_19_pad_type_0"), val = tensor("valid")]; tensor key_19_strides_0 = const()[name = tensor("key_19_strides_0"), val = tensor([1, 1])]; tensor key_19_pad_0 = const()[name = tensor("key_19_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_19_dilations_0 = const()[name = tensor("key_19_dilations_0"), val = tensor([1, 1])]; tensor key_19_groups_0 = const()[name = tensor("key_19_groups_0"), val = tensor(1)]; tensor layers_9_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_9_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(238689472)))]; tensor key_19_cast_fp16 = conv(dilations = key_19_dilations_0, groups = key_19_groups_0, pad = key_19_pad_0, pad_type = key_19_pad_type_0, strides = key_19_strides_0, weight = layers_9_self_attn_k_proj_weight_to_fp16, x = obj_37_cast_fp16)[name = tensor("key_19_cast_fp16")]; tensor value_19_pad_type_0 = const()[name = tensor("value_19_pad_type_0"), val = tensor("valid")]; tensor value_19_strides_0 = const()[name = tensor("value_19_strides_0"), val = tensor([1, 1])]; tensor value_19_pad_0 = const()[name = tensor("value_19_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_19_dilations_0 = const()[name = tensor("value_19_dilations_0"), val = tensor([1, 1])]; tensor value_19_groups_0 = const()[name = tensor("value_19_groups_0"), val = tensor(1)]; tensor layers_9_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_9_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(240786688)))]; tensor layers_9_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_9_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(242883904)))]; tensor value_19_cast_fp16 = conv(bias = layers_9_self_attn_v_proj_bias_to_fp16, dilations = value_19_dilations_0, groups = value_19_groups_0, pad = value_19_pad_0, pad_type = value_19_pad_type_0, strides = value_19_strides_0, weight = layers_9_self_attn_v_proj_weight_to_fp16, x = obj_37_cast_fp16)[name = tensor("value_19_cast_fp16")]; tensor var_1296 = const()[name = tensor("op_1296"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_19_cast_fp16 = reshape(shape = var_1296, x = query_19_cast_fp16)[name = tensor("mh_q_19_cast_fp16")]; tensor var_1298_to_fp16 = const()[name = tensor("op_1298_to_fp16"), val = tensor(0x1p-3)]; tensor var_1299_cast_fp16 = mul(x = mh_q_19_cast_fp16, y = var_1298_to_fp16)[name = tensor("op_1299_cast_fp16")]; tensor var_1302 = const()[name = tensor("op_1302"), val = tensor([1, 16, 64, 1500])]; tensor var_1303_cast_fp16 = reshape(shape = var_1302, x = key_19_cast_fp16)[name = tensor("op_1303_cast_fp16")]; tensor mh_w_19_transpose_x_0 = const()[name = tensor("mh_w_19_transpose_x_0"), val = tensor(true)]; tensor mh_w_19_transpose_y_0 = const()[name = tensor("mh_w_19_transpose_y_0"), val = tensor(false)]; tensor mh_w_19_cast_fp16 = matmul(transpose_x = mh_w_19_transpose_x_0, transpose_y = mh_w_19_transpose_y_0, x = var_1299_cast_fp16, y = var_1303_cast_fp16)[name = tensor("mh_w_19_cast_fp16")]; tensor var_1306_cast_fp16 = softmax(axis = var_1238, x = mh_w_19_cast_fp16)[name = tensor("op_1306_cast_fp16")]; tensor var_1307 = const()[name = tensor("op_1307"), val = tensor([1, 16, 64, 1500])]; tensor var_1308_cast_fp16 = reshape(shape = var_1307, x = value_19_cast_fp16)[name = tensor("op_1308_cast_fp16")]; tensor attn_19_transpose_x_0 = const()[name = tensor("attn_19_transpose_x_0"), val = tensor(false)]; tensor attn_19_transpose_y_0 = const()[name = tensor("attn_19_transpose_y_0"), val = tensor(true)]; tensor attn_19_cast_fp16 = matmul(transpose_x = attn_19_transpose_x_0, transpose_y = attn_19_transpose_y_0, x = var_1308_cast_fp16, y = var_1306_cast_fp16)[name = tensor("attn_19_cast_fp16")]; tensor var_1311 = const()[name = tensor("op_1311"), val = tensor([1, 1024, 1, 1500])]; tensor input_73_cast_fp16 = reshape(shape = var_1311, x = attn_19_cast_fp16)[name = tensor("input_73_cast_fp16")]; tensor obj_39_pad_type_0 = const()[name = tensor("obj_39_pad_type_0"), val = tensor("valid")]; tensor obj_39_strides_0 = const()[name = tensor("obj_39_strides_0"), val = tensor([1, 1])]; tensor obj_39_pad_0 = const()[name = tensor("obj_39_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_39_dilations_0 = const()[name = tensor("obj_39_dilations_0"), val = tensor([1, 1])]; tensor obj_39_groups_0 = const()[name = tensor("obj_39_groups_0"), val = tensor(1)]; tensor layers_9_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_9_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(242886016)))]; tensor layers_9_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_9_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(244983232)))]; tensor obj_39_cast_fp16 = conv(bias = layers_9_self_attn_o_proj_bias_to_fp16, dilations = obj_39_dilations_0, groups = obj_39_groups_0, pad = obj_39_pad_0, pad_type = obj_39_pad_type_0, strides = obj_39_strides_0, weight = layers_9_self_attn_o_proj_weight_to_fp16, x = input_73_cast_fp16)[name = tensor("obj_39_cast_fp16")]; tensor inputs_39_cast_fp16 = add(x = inputs_37_cast_fp16, y = obj_39_cast_fp16)[name = tensor("inputs_39_cast_fp16")]; tensor out_39_axes_0 = const()[name = tensor("out_39_axes_0"), val = tensor([1])]; tensor var_1329_to_fp16 = const()[name = tensor("op_1329_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_39_cast_fp16 = layer_norm(axes = out_39_axes_0, epsilon = var_1329_to_fp16, x = inputs_39_cast_fp16)[name = tensor("out_39_cast_fp16")]; tensor input_75_gamma_0_to_fp16 = const()[name = tensor("input_75_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(244985344)))]; tensor input_75_beta_0_to_fp16 = const()[name = tensor("input_75_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(244987456)))]; tensor input_75_epsilon_0_to_fp16 = const()[name = tensor("input_75_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_75_cast_fp16 = batch_norm(beta = input_75_beta_0_to_fp16, epsilon = input_75_epsilon_0_to_fp16, gamma = input_75_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_39_cast_fp16)[name = tensor("input_75_cast_fp16")]; tensor input_77_pad_type_0 = const()[name = tensor("input_77_pad_type_0"), val = tensor("valid")]; tensor input_77_strides_0 = const()[name = tensor("input_77_strides_0"), val = tensor([1, 1])]; tensor input_77_pad_0 = const()[name = tensor("input_77_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_77_dilations_0 = const()[name = tensor("input_77_dilations_0"), val = tensor([1, 1])]; tensor input_77_groups_0 = const()[name = tensor("input_77_groups_0"), val = tensor(1)]; tensor layers_9_fc1_weight_to_fp16 = const()[name = tensor("layers_9_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(244989568)))]; tensor layers_9_fc1_bias_to_fp16 = const()[name = tensor("layers_9_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(253378240)))]; tensor input_77_cast_fp16 = conv(bias = layers_9_fc1_bias_to_fp16, dilations = input_77_dilations_0, groups = input_77_groups_0, pad = input_77_pad_0, pad_type = input_77_pad_type_0, strides = input_77_strides_0, weight = layers_9_fc1_weight_to_fp16, x = input_75_cast_fp16)[name = tensor("input_77_cast_fp16")]; tensor input_79_mode_0 = const()[name = tensor("input_79_mode_0"), val = tensor("EXACT")]; tensor input_79_cast_fp16 = gelu(mode = input_79_mode_0, x = input_77_cast_fp16)[name = tensor("input_79_cast_fp16")]; tensor hidden_states_23_pad_type_0 = const()[name = tensor("hidden_states_23_pad_type_0"), val = tensor("valid")]; tensor hidden_states_23_strides_0 = const()[name = tensor("hidden_states_23_strides_0"), val = tensor([1, 1])]; tensor hidden_states_23_pad_0 = const()[name = tensor("hidden_states_23_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_23_dilations_0 = const()[name = tensor("hidden_states_23_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_23_groups_0 = const()[name = tensor("hidden_states_23_groups_0"), val = tensor(1)]; tensor layers_9_fc2_weight_to_fp16 = const()[name = tensor("layers_9_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(253386496)))]; tensor layers_9_fc2_bias_to_fp16 = const()[name = tensor("layers_9_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(261775168)))]; tensor hidden_states_23_cast_fp16 = conv(bias = layers_9_fc2_bias_to_fp16, dilations = hidden_states_23_dilations_0, groups = hidden_states_23_groups_0, pad = hidden_states_23_pad_0, pad_type = hidden_states_23_pad_type_0, strides = hidden_states_23_strides_0, weight = layers_9_fc2_weight_to_fp16, x = input_79_cast_fp16)[name = tensor("hidden_states_23_cast_fp16")]; tensor inputs_41_cast_fp16 = add(x = inputs_39_cast_fp16, y = hidden_states_23_cast_fp16)[name = tensor("inputs_41_cast_fp16")]; tensor var_1358 = const()[name = tensor("op_1358"), val = tensor(3)]; tensor out_41_axes_0 = const()[name = tensor("out_41_axes_0"), val = tensor([1])]; tensor var_1380_to_fp16 = const()[name = tensor("op_1380_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_41_cast_fp16 = layer_norm(axes = out_41_axes_0, epsilon = var_1380_to_fp16, x = inputs_41_cast_fp16)[name = tensor("out_41_cast_fp16")]; tensor obj_41_gamma_0_to_fp16 = const()[name = tensor("obj_41_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(261777280)))]; tensor obj_41_beta_0_to_fp16 = const()[name = tensor("obj_41_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(261779392)))]; tensor obj_41_epsilon_0_to_fp16 = const()[name = tensor("obj_41_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_41_cast_fp16 = batch_norm(beta = obj_41_beta_0_to_fp16, epsilon = obj_41_epsilon_0_to_fp16, gamma = obj_41_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_41_cast_fp16)[name = tensor("obj_41_cast_fp16")]; tensor query_21_pad_type_0 = const()[name = tensor("query_21_pad_type_0"), val = tensor("valid")]; tensor query_21_strides_0 = const()[name = tensor("query_21_strides_0"), val = tensor([1, 1])]; tensor query_21_pad_0 = const()[name = tensor("query_21_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_21_dilations_0 = const()[name = tensor("query_21_dilations_0"), val = tensor([1, 1])]; tensor query_21_groups_0 = const()[name = tensor("query_21_groups_0"), val = tensor(1)]; tensor layers_10_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_10_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(261781504)))]; tensor layers_10_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_10_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(263878720)))]; tensor query_21_cast_fp16 = conv(bias = layers_10_self_attn_q_proj_bias_to_fp16, dilations = query_21_dilations_0, groups = query_21_groups_0, pad = query_21_pad_0, pad_type = query_21_pad_type_0, strides = query_21_strides_0, weight = layers_10_self_attn_q_proj_weight_to_fp16, x = obj_41_cast_fp16)[name = tensor("query_21_cast_fp16")]; tensor key_21_pad_type_0 = const()[name = tensor("key_21_pad_type_0"), val = tensor("valid")]; tensor key_21_strides_0 = const()[name = tensor("key_21_strides_0"), val = tensor([1, 1])]; tensor key_21_pad_0 = const()[name = tensor("key_21_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_21_dilations_0 = const()[name = tensor("key_21_dilations_0"), val = tensor([1, 1])]; tensor key_21_groups_0 = const()[name = tensor("key_21_groups_0"), val = tensor(1)]; tensor layers_10_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_10_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(263880832)))]; tensor key_21_cast_fp16 = conv(dilations = key_21_dilations_0, groups = key_21_groups_0, pad = key_21_pad_0, pad_type = key_21_pad_type_0, strides = key_21_strides_0, weight = layers_10_self_attn_k_proj_weight_to_fp16, x = obj_41_cast_fp16)[name = tensor("key_21_cast_fp16")]; tensor value_21_pad_type_0 = const()[name = tensor("value_21_pad_type_0"), val = tensor("valid")]; tensor value_21_strides_0 = const()[name = tensor("value_21_strides_0"), val = tensor([1, 1])]; tensor value_21_pad_0 = const()[name = tensor("value_21_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_21_dilations_0 = const()[name = tensor("value_21_dilations_0"), val = tensor([1, 1])]; tensor value_21_groups_0 = const()[name = tensor("value_21_groups_0"), val = tensor(1)]; tensor layers_10_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_10_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(265978048)))]; tensor layers_10_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_10_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(268075264)))]; tensor value_21_cast_fp16 = conv(bias = layers_10_self_attn_v_proj_bias_to_fp16, dilations = value_21_dilations_0, groups = value_21_groups_0, pad = value_21_pad_0, pad_type = value_21_pad_type_0, strides = value_21_strides_0, weight = layers_10_self_attn_v_proj_weight_to_fp16, x = obj_41_cast_fp16)[name = tensor("value_21_cast_fp16")]; tensor var_1416 = const()[name = tensor("op_1416"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_21_cast_fp16 = reshape(shape = var_1416, x = query_21_cast_fp16)[name = tensor("mh_q_21_cast_fp16")]; tensor var_1418_to_fp16 = const()[name = tensor("op_1418_to_fp16"), val = tensor(0x1p-3)]; tensor var_1419_cast_fp16 = mul(x = mh_q_21_cast_fp16, y = var_1418_to_fp16)[name = tensor("op_1419_cast_fp16")]; tensor var_1422 = const()[name = tensor("op_1422"), val = tensor([1, 16, 64, 1500])]; tensor var_1423_cast_fp16 = reshape(shape = var_1422, x = key_21_cast_fp16)[name = tensor("op_1423_cast_fp16")]; tensor mh_w_21_transpose_x_0 = const()[name = tensor("mh_w_21_transpose_x_0"), val = tensor(true)]; tensor mh_w_21_transpose_y_0 = const()[name = tensor("mh_w_21_transpose_y_0"), val = tensor(false)]; tensor mh_w_21_cast_fp16 = matmul(transpose_x = mh_w_21_transpose_x_0, transpose_y = mh_w_21_transpose_y_0, x = var_1419_cast_fp16, y = var_1423_cast_fp16)[name = tensor("mh_w_21_cast_fp16")]; tensor var_1426_cast_fp16 = softmax(axis = var_1358, x = mh_w_21_cast_fp16)[name = tensor("op_1426_cast_fp16")]; tensor var_1427 = const()[name = tensor("op_1427"), val = tensor([1, 16, 64, 1500])]; tensor var_1428_cast_fp16 = reshape(shape = var_1427, x = value_21_cast_fp16)[name = tensor("op_1428_cast_fp16")]; tensor attn_21_transpose_x_0 = const()[name = tensor("attn_21_transpose_x_0"), val = tensor(false)]; tensor attn_21_transpose_y_0 = const()[name = tensor("attn_21_transpose_y_0"), val = tensor(true)]; tensor attn_21_cast_fp16 = matmul(transpose_x = attn_21_transpose_x_0, transpose_y = attn_21_transpose_y_0, x = var_1428_cast_fp16, y = var_1426_cast_fp16)[name = tensor("attn_21_cast_fp16")]; tensor var_1431 = const()[name = tensor("op_1431"), val = tensor([1, 1024, 1, 1500])]; tensor input_81_cast_fp16 = reshape(shape = var_1431, x = attn_21_cast_fp16)[name = tensor("input_81_cast_fp16")]; tensor obj_43_pad_type_0 = const()[name = tensor("obj_43_pad_type_0"), val = tensor("valid")]; tensor obj_43_strides_0 = const()[name = tensor("obj_43_strides_0"), val = tensor([1, 1])]; tensor obj_43_pad_0 = const()[name = tensor("obj_43_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_43_dilations_0 = const()[name = tensor("obj_43_dilations_0"), val = tensor([1, 1])]; tensor obj_43_groups_0 = const()[name = tensor("obj_43_groups_0"), val = tensor(1)]; tensor layers_10_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_10_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(268077376)))]; tensor layers_10_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_10_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(270174592)))]; tensor obj_43_cast_fp16 = conv(bias = layers_10_self_attn_o_proj_bias_to_fp16, dilations = obj_43_dilations_0, groups = obj_43_groups_0, pad = obj_43_pad_0, pad_type = obj_43_pad_type_0, strides = obj_43_strides_0, weight = layers_10_self_attn_o_proj_weight_to_fp16, x = input_81_cast_fp16)[name = tensor("obj_43_cast_fp16")]; tensor inputs_43_cast_fp16 = add(x = inputs_41_cast_fp16, y = obj_43_cast_fp16)[name = tensor("inputs_43_cast_fp16")]; tensor out_43_axes_0 = const()[name = tensor("out_43_axes_0"), val = tensor([1])]; tensor var_1449_to_fp16 = const()[name = tensor("op_1449_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_43_cast_fp16 = layer_norm(axes = out_43_axes_0, epsilon = var_1449_to_fp16, x = inputs_43_cast_fp16)[name = tensor("out_43_cast_fp16")]; tensor input_83_gamma_0_to_fp16 = const()[name = tensor("input_83_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(270176704)))]; tensor input_83_beta_0_to_fp16 = const()[name = tensor("input_83_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(270178816)))]; tensor input_83_epsilon_0_to_fp16 = const()[name = tensor("input_83_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_83_cast_fp16 = batch_norm(beta = input_83_beta_0_to_fp16, epsilon = input_83_epsilon_0_to_fp16, gamma = input_83_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_43_cast_fp16)[name = tensor("input_83_cast_fp16")]; tensor input_85_pad_type_0 = const()[name = tensor("input_85_pad_type_0"), val = tensor("valid")]; tensor input_85_strides_0 = const()[name = tensor("input_85_strides_0"), val = tensor([1, 1])]; tensor input_85_pad_0 = const()[name = tensor("input_85_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_85_dilations_0 = const()[name = tensor("input_85_dilations_0"), val = tensor([1, 1])]; tensor input_85_groups_0 = const()[name = tensor("input_85_groups_0"), val = tensor(1)]; tensor layers_10_fc1_weight_to_fp16 = const()[name = tensor("layers_10_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(270180928)))]; tensor layers_10_fc1_bias_to_fp16 = const()[name = tensor("layers_10_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(278569600)))]; tensor input_85_cast_fp16 = conv(bias = layers_10_fc1_bias_to_fp16, dilations = input_85_dilations_0, groups = input_85_groups_0, pad = input_85_pad_0, pad_type = input_85_pad_type_0, strides = input_85_strides_0, weight = layers_10_fc1_weight_to_fp16, x = input_83_cast_fp16)[name = tensor("input_85_cast_fp16")]; tensor input_87_mode_0 = const()[name = tensor("input_87_mode_0"), val = tensor("EXACT")]; tensor input_87_cast_fp16 = gelu(mode = input_87_mode_0, x = input_85_cast_fp16)[name = tensor("input_87_cast_fp16")]; tensor hidden_states_25_pad_type_0 = const()[name = tensor("hidden_states_25_pad_type_0"), val = tensor("valid")]; tensor hidden_states_25_strides_0 = const()[name = tensor("hidden_states_25_strides_0"), val = tensor([1, 1])]; tensor hidden_states_25_pad_0 = const()[name = tensor("hidden_states_25_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_25_dilations_0 = const()[name = tensor("hidden_states_25_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_25_groups_0 = const()[name = tensor("hidden_states_25_groups_0"), val = tensor(1)]; tensor layers_10_fc2_weight_to_fp16 = const()[name = tensor("layers_10_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(278577856)))]; tensor layers_10_fc2_bias_to_fp16 = const()[name = tensor("layers_10_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(286966528)))]; tensor hidden_states_25_cast_fp16 = conv(bias = layers_10_fc2_bias_to_fp16, dilations = hidden_states_25_dilations_0, groups = hidden_states_25_groups_0, pad = hidden_states_25_pad_0, pad_type = hidden_states_25_pad_type_0, strides = hidden_states_25_strides_0, weight = layers_10_fc2_weight_to_fp16, x = input_87_cast_fp16)[name = tensor("hidden_states_25_cast_fp16")]; tensor inputs_45_cast_fp16 = add(x = inputs_43_cast_fp16, y = hidden_states_25_cast_fp16)[name = tensor("inputs_45_cast_fp16")]; tensor var_1478 = const()[name = tensor("op_1478"), val = tensor(3)]; tensor out_45_axes_0 = const()[name = tensor("out_45_axes_0"), val = tensor([1])]; tensor var_1500_to_fp16 = const()[name = tensor("op_1500_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_45_cast_fp16 = layer_norm(axes = out_45_axes_0, epsilon = var_1500_to_fp16, x = inputs_45_cast_fp16)[name = tensor("out_45_cast_fp16")]; tensor obj_45_gamma_0_to_fp16 = const()[name = tensor("obj_45_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(286968640)))]; tensor obj_45_beta_0_to_fp16 = const()[name = tensor("obj_45_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(286970752)))]; tensor obj_45_epsilon_0_to_fp16 = const()[name = tensor("obj_45_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_45_cast_fp16 = batch_norm(beta = obj_45_beta_0_to_fp16, epsilon = obj_45_epsilon_0_to_fp16, gamma = obj_45_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_45_cast_fp16)[name = tensor("obj_45_cast_fp16")]; tensor query_23_pad_type_0 = const()[name = tensor("query_23_pad_type_0"), val = tensor("valid")]; tensor query_23_strides_0 = const()[name = tensor("query_23_strides_0"), val = tensor([1, 1])]; tensor query_23_pad_0 = const()[name = tensor("query_23_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_23_dilations_0 = const()[name = tensor("query_23_dilations_0"), val = tensor([1, 1])]; tensor query_23_groups_0 = const()[name = tensor("query_23_groups_0"), val = tensor(1)]; tensor layers_11_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_11_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(286972864)))]; tensor layers_11_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_11_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(289070080)))]; tensor query_23_cast_fp16 = conv(bias = layers_11_self_attn_q_proj_bias_to_fp16, dilations = query_23_dilations_0, groups = query_23_groups_0, pad = query_23_pad_0, pad_type = query_23_pad_type_0, strides = query_23_strides_0, weight = layers_11_self_attn_q_proj_weight_to_fp16, x = obj_45_cast_fp16)[name = tensor("query_23_cast_fp16")]; tensor key_23_pad_type_0 = const()[name = tensor("key_23_pad_type_0"), val = tensor("valid")]; tensor key_23_strides_0 = const()[name = tensor("key_23_strides_0"), val = tensor([1, 1])]; tensor key_23_pad_0 = const()[name = tensor("key_23_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_23_dilations_0 = const()[name = tensor("key_23_dilations_0"), val = tensor([1, 1])]; tensor key_23_groups_0 = const()[name = tensor("key_23_groups_0"), val = tensor(1)]; tensor layers_11_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_11_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(289072192)))]; tensor key_23_cast_fp16 = conv(dilations = key_23_dilations_0, groups = key_23_groups_0, pad = key_23_pad_0, pad_type = key_23_pad_type_0, strides = key_23_strides_0, weight = layers_11_self_attn_k_proj_weight_to_fp16, x = obj_45_cast_fp16)[name = tensor("key_23_cast_fp16")]; tensor value_23_pad_type_0 = const()[name = tensor("value_23_pad_type_0"), val = tensor("valid")]; tensor value_23_strides_0 = const()[name = tensor("value_23_strides_0"), val = tensor([1, 1])]; tensor value_23_pad_0 = const()[name = tensor("value_23_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_23_dilations_0 = const()[name = tensor("value_23_dilations_0"), val = tensor([1, 1])]; tensor value_23_groups_0 = const()[name = tensor("value_23_groups_0"), val = tensor(1)]; tensor layers_11_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_11_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(291169408)))]; tensor layers_11_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_11_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(293266624)))]; tensor value_23_cast_fp16 = conv(bias = layers_11_self_attn_v_proj_bias_to_fp16, dilations = value_23_dilations_0, groups = value_23_groups_0, pad = value_23_pad_0, pad_type = value_23_pad_type_0, strides = value_23_strides_0, weight = layers_11_self_attn_v_proj_weight_to_fp16, x = obj_45_cast_fp16)[name = tensor("value_23_cast_fp16")]; tensor var_1536 = const()[name = tensor("op_1536"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_23_cast_fp16 = reshape(shape = var_1536, x = query_23_cast_fp16)[name = tensor("mh_q_23_cast_fp16")]; tensor var_1538_to_fp16 = const()[name = tensor("op_1538_to_fp16"), val = tensor(0x1p-3)]; tensor var_1539_cast_fp16 = mul(x = mh_q_23_cast_fp16, y = var_1538_to_fp16)[name = tensor("op_1539_cast_fp16")]; tensor var_1542 = const()[name = tensor("op_1542"), val = tensor([1, 16, 64, 1500])]; tensor var_1543_cast_fp16 = reshape(shape = var_1542, x = key_23_cast_fp16)[name = tensor("op_1543_cast_fp16")]; tensor mh_w_23_transpose_x_0 = const()[name = tensor("mh_w_23_transpose_x_0"), val = tensor(true)]; tensor mh_w_23_transpose_y_0 = const()[name = tensor("mh_w_23_transpose_y_0"), val = tensor(false)]; tensor mh_w_23_cast_fp16 = matmul(transpose_x = mh_w_23_transpose_x_0, transpose_y = mh_w_23_transpose_y_0, x = var_1539_cast_fp16, y = var_1543_cast_fp16)[name = tensor("mh_w_23_cast_fp16")]; tensor var_1546_cast_fp16 = softmax(axis = var_1478, x = mh_w_23_cast_fp16)[name = tensor("op_1546_cast_fp16")]; tensor var_1547 = const()[name = tensor("op_1547"), val = tensor([1, 16, 64, 1500])]; tensor var_1548_cast_fp16 = reshape(shape = var_1547, x = value_23_cast_fp16)[name = tensor("op_1548_cast_fp16")]; tensor attn_23_transpose_x_0 = const()[name = tensor("attn_23_transpose_x_0"), val = tensor(false)]; tensor attn_23_transpose_y_0 = const()[name = tensor("attn_23_transpose_y_0"), val = tensor(true)]; tensor attn_23_cast_fp16 = matmul(transpose_x = attn_23_transpose_x_0, transpose_y = attn_23_transpose_y_0, x = var_1548_cast_fp16, y = var_1546_cast_fp16)[name = tensor("attn_23_cast_fp16")]; tensor var_1551 = const()[name = tensor("op_1551"), val = tensor([1, 1024, 1, 1500])]; tensor input_89_cast_fp16 = reshape(shape = var_1551, x = attn_23_cast_fp16)[name = tensor("input_89_cast_fp16")]; tensor obj_47_pad_type_0 = const()[name = tensor("obj_47_pad_type_0"), val = tensor("valid")]; tensor obj_47_strides_0 = const()[name = tensor("obj_47_strides_0"), val = tensor([1, 1])]; tensor obj_47_pad_0 = const()[name = tensor("obj_47_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_47_dilations_0 = const()[name = tensor("obj_47_dilations_0"), val = tensor([1, 1])]; tensor obj_47_groups_0 = const()[name = tensor("obj_47_groups_0"), val = tensor(1)]; tensor layers_11_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_11_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(293268736)))]; tensor layers_11_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_11_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(295365952)))]; tensor obj_47_cast_fp16 = conv(bias = layers_11_self_attn_o_proj_bias_to_fp16, dilations = obj_47_dilations_0, groups = obj_47_groups_0, pad = obj_47_pad_0, pad_type = obj_47_pad_type_0, strides = obj_47_strides_0, weight = layers_11_self_attn_o_proj_weight_to_fp16, x = input_89_cast_fp16)[name = tensor("obj_47_cast_fp16")]; tensor inputs_47_cast_fp16 = add(x = inputs_45_cast_fp16, y = obj_47_cast_fp16)[name = tensor("inputs_47_cast_fp16")]; tensor out_47_axes_0 = const()[name = tensor("out_47_axes_0"), val = tensor([1])]; tensor var_1569_to_fp16 = const()[name = tensor("op_1569_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_47_cast_fp16 = layer_norm(axes = out_47_axes_0, epsilon = var_1569_to_fp16, x = inputs_47_cast_fp16)[name = tensor("out_47_cast_fp16")]; tensor input_91_gamma_0_to_fp16 = const()[name = tensor("input_91_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(295368064)))]; tensor input_91_beta_0_to_fp16 = const()[name = tensor("input_91_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(295370176)))]; tensor input_91_epsilon_0_to_fp16 = const()[name = tensor("input_91_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_91_cast_fp16 = batch_norm(beta = input_91_beta_0_to_fp16, epsilon = input_91_epsilon_0_to_fp16, gamma = input_91_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_47_cast_fp16)[name = tensor("input_91_cast_fp16")]; tensor input_93_pad_type_0 = const()[name = tensor("input_93_pad_type_0"), val = tensor("valid")]; tensor input_93_strides_0 = const()[name = tensor("input_93_strides_0"), val = tensor([1, 1])]; tensor input_93_pad_0 = const()[name = tensor("input_93_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_93_dilations_0 = const()[name = tensor("input_93_dilations_0"), val = tensor([1, 1])]; tensor input_93_groups_0 = const()[name = tensor("input_93_groups_0"), val = tensor(1)]; tensor layers_11_fc1_weight_to_fp16 = const()[name = tensor("layers_11_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(295372288)))]; tensor layers_11_fc1_bias_to_fp16 = const()[name = tensor("layers_11_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(303760960)))]; tensor input_93_cast_fp16 = conv(bias = layers_11_fc1_bias_to_fp16, dilations = input_93_dilations_0, groups = input_93_groups_0, pad = input_93_pad_0, pad_type = input_93_pad_type_0, strides = input_93_strides_0, weight = layers_11_fc1_weight_to_fp16, x = input_91_cast_fp16)[name = tensor("input_93_cast_fp16")]; tensor input_95_mode_0 = const()[name = tensor("input_95_mode_0"), val = tensor("EXACT")]; tensor input_95_cast_fp16 = gelu(mode = input_95_mode_0, x = input_93_cast_fp16)[name = tensor("input_95_cast_fp16")]; tensor hidden_states_27_pad_type_0 = const()[name = tensor("hidden_states_27_pad_type_0"), val = tensor("valid")]; tensor hidden_states_27_strides_0 = const()[name = tensor("hidden_states_27_strides_0"), val = tensor([1, 1])]; tensor hidden_states_27_pad_0 = const()[name = tensor("hidden_states_27_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_27_dilations_0 = const()[name = tensor("hidden_states_27_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_27_groups_0 = const()[name = tensor("hidden_states_27_groups_0"), val = tensor(1)]; tensor layers_11_fc2_weight_to_fp16 = const()[name = tensor("layers_11_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(303769216)))]; tensor layers_11_fc2_bias_to_fp16 = const()[name = tensor("layers_11_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(312157888)))]; tensor hidden_states_27_cast_fp16 = conv(bias = layers_11_fc2_bias_to_fp16, dilations = hidden_states_27_dilations_0, groups = hidden_states_27_groups_0, pad = hidden_states_27_pad_0, pad_type = hidden_states_27_pad_type_0, strides = hidden_states_27_strides_0, weight = layers_11_fc2_weight_to_fp16, x = input_95_cast_fp16)[name = tensor("hidden_states_27_cast_fp16")]; tensor inputs_49_cast_fp16 = add(x = inputs_47_cast_fp16, y = hidden_states_27_cast_fp16)[name = tensor("inputs_49_cast_fp16")]; tensor var_1598 = const()[name = tensor("op_1598"), val = tensor(3)]; tensor out_49_axes_0 = const()[name = tensor("out_49_axes_0"), val = tensor([1])]; tensor var_1620_to_fp16 = const()[name = tensor("op_1620_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_49_cast_fp16 = layer_norm(axes = out_49_axes_0, epsilon = var_1620_to_fp16, x = inputs_49_cast_fp16)[name = tensor("out_49_cast_fp16")]; tensor obj_49_gamma_0_to_fp16 = const()[name = tensor("obj_49_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(312160000)))]; tensor obj_49_beta_0_to_fp16 = const()[name = tensor("obj_49_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(312162112)))]; tensor obj_49_epsilon_0_to_fp16 = const()[name = tensor("obj_49_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_49_cast_fp16 = batch_norm(beta = obj_49_beta_0_to_fp16, epsilon = obj_49_epsilon_0_to_fp16, gamma = obj_49_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_49_cast_fp16)[name = tensor("obj_49_cast_fp16")]; tensor query_25_pad_type_0 = const()[name = tensor("query_25_pad_type_0"), val = tensor("valid")]; tensor query_25_strides_0 = const()[name = tensor("query_25_strides_0"), val = tensor([1, 1])]; tensor query_25_pad_0 = const()[name = tensor("query_25_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_25_dilations_0 = const()[name = tensor("query_25_dilations_0"), val = tensor([1, 1])]; tensor query_25_groups_0 = const()[name = tensor("query_25_groups_0"), val = tensor(1)]; tensor layers_12_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_12_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(312164224)))]; tensor layers_12_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_12_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(314261440)))]; tensor query_25_cast_fp16 = conv(bias = layers_12_self_attn_q_proj_bias_to_fp16, dilations = query_25_dilations_0, groups = query_25_groups_0, pad = query_25_pad_0, pad_type = query_25_pad_type_0, strides = query_25_strides_0, weight = layers_12_self_attn_q_proj_weight_to_fp16, x = obj_49_cast_fp16)[name = tensor("query_25_cast_fp16")]; tensor key_25_pad_type_0 = const()[name = tensor("key_25_pad_type_0"), val = tensor("valid")]; tensor key_25_strides_0 = const()[name = tensor("key_25_strides_0"), val = tensor([1, 1])]; tensor key_25_pad_0 = const()[name = tensor("key_25_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_25_dilations_0 = const()[name = tensor("key_25_dilations_0"), val = tensor([1, 1])]; tensor key_25_groups_0 = const()[name = tensor("key_25_groups_0"), val = tensor(1)]; tensor layers_12_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_12_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(314263552)))]; tensor key_25_cast_fp16 = conv(dilations = key_25_dilations_0, groups = key_25_groups_0, pad = key_25_pad_0, pad_type = key_25_pad_type_0, strides = key_25_strides_0, weight = layers_12_self_attn_k_proj_weight_to_fp16, x = obj_49_cast_fp16)[name = tensor("key_25_cast_fp16")]; tensor value_25_pad_type_0 = const()[name = tensor("value_25_pad_type_0"), val = tensor("valid")]; tensor value_25_strides_0 = const()[name = tensor("value_25_strides_0"), val = tensor([1, 1])]; tensor value_25_pad_0 = const()[name = tensor("value_25_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_25_dilations_0 = const()[name = tensor("value_25_dilations_0"), val = tensor([1, 1])]; tensor value_25_groups_0 = const()[name = tensor("value_25_groups_0"), val = tensor(1)]; tensor layers_12_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_12_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(316360768)))]; tensor layers_12_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_12_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(318457984)))]; tensor value_25_cast_fp16 = conv(bias = layers_12_self_attn_v_proj_bias_to_fp16, dilations = value_25_dilations_0, groups = value_25_groups_0, pad = value_25_pad_0, pad_type = value_25_pad_type_0, strides = value_25_strides_0, weight = layers_12_self_attn_v_proj_weight_to_fp16, x = obj_49_cast_fp16)[name = tensor("value_25_cast_fp16")]; tensor var_1656 = const()[name = tensor("op_1656"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_25_cast_fp16 = reshape(shape = var_1656, x = query_25_cast_fp16)[name = tensor("mh_q_25_cast_fp16")]; tensor var_1658_to_fp16 = const()[name = tensor("op_1658_to_fp16"), val = tensor(0x1p-3)]; tensor var_1659_cast_fp16 = mul(x = mh_q_25_cast_fp16, y = var_1658_to_fp16)[name = tensor("op_1659_cast_fp16")]; tensor var_1662 = const()[name = tensor("op_1662"), val = tensor([1, 16, 64, 1500])]; tensor var_1663_cast_fp16 = reshape(shape = var_1662, x = key_25_cast_fp16)[name = tensor("op_1663_cast_fp16")]; tensor mh_w_25_transpose_x_0 = const()[name = tensor("mh_w_25_transpose_x_0"), val = tensor(true)]; tensor mh_w_25_transpose_y_0 = const()[name = tensor("mh_w_25_transpose_y_0"), val = tensor(false)]; tensor mh_w_25_cast_fp16 = matmul(transpose_x = mh_w_25_transpose_x_0, transpose_y = mh_w_25_transpose_y_0, x = var_1659_cast_fp16, y = var_1663_cast_fp16)[name = tensor("mh_w_25_cast_fp16")]; tensor var_1666_cast_fp16 = softmax(axis = var_1598, x = mh_w_25_cast_fp16)[name = tensor("op_1666_cast_fp16")]; tensor var_1667 = const()[name = tensor("op_1667"), val = tensor([1, 16, 64, 1500])]; tensor var_1668_cast_fp16 = reshape(shape = var_1667, x = value_25_cast_fp16)[name = tensor("op_1668_cast_fp16")]; tensor attn_25_transpose_x_0 = const()[name = tensor("attn_25_transpose_x_0"), val = tensor(false)]; tensor attn_25_transpose_y_0 = const()[name = tensor("attn_25_transpose_y_0"), val = tensor(true)]; tensor attn_25_cast_fp16 = matmul(transpose_x = attn_25_transpose_x_0, transpose_y = attn_25_transpose_y_0, x = var_1668_cast_fp16, y = var_1666_cast_fp16)[name = tensor("attn_25_cast_fp16")]; tensor var_1671 = const()[name = tensor("op_1671"), val = tensor([1, 1024, 1, 1500])]; tensor input_97_cast_fp16 = reshape(shape = var_1671, x = attn_25_cast_fp16)[name = tensor("input_97_cast_fp16")]; tensor obj_51_pad_type_0 = const()[name = tensor("obj_51_pad_type_0"), val = tensor("valid")]; tensor obj_51_strides_0 = const()[name = tensor("obj_51_strides_0"), val = tensor([1, 1])]; tensor obj_51_pad_0 = const()[name = tensor("obj_51_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_51_dilations_0 = const()[name = tensor("obj_51_dilations_0"), val = tensor([1, 1])]; tensor obj_51_groups_0 = const()[name = tensor("obj_51_groups_0"), val = tensor(1)]; tensor layers_12_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_12_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(318460096)))]; tensor layers_12_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_12_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(320557312)))]; tensor obj_51_cast_fp16 = conv(bias = layers_12_self_attn_o_proj_bias_to_fp16, dilations = obj_51_dilations_0, groups = obj_51_groups_0, pad = obj_51_pad_0, pad_type = obj_51_pad_type_0, strides = obj_51_strides_0, weight = layers_12_self_attn_o_proj_weight_to_fp16, x = input_97_cast_fp16)[name = tensor("obj_51_cast_fp16")]; tensor inputs_51_cast_fp16 = add(x = inputs_49_cast_fp16, y = obj_51_cast_fp16)[name = tensor("inputs_51_cast_fp16")]; tensor out_51_axes_0 = const()[name = tensor("out_51_axes_0"), val = tensor([1])]; tensor var_1689_to_fp16 = const()[name = tensor("op_1689_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_51_cast_fp16 = layer_norm(axes = out_51_axes_0, epsilon = var_1689_to_fp16, x = inputs_51_cast_fp16)[name = tensor("out_51_cast_fp16")]; tensor input_99_gamma_0_to_fp16 = const()[name = tensor("input_99_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(320559424)))]; tensor input_99_beta_0_to_fp16 = const()[name = tensor("input_99_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(320561536)))]; tensor input_99_epsilon_0_to_fp16 = const()[name = tensor("input_99_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_99_cast_fp16 = batch_norm(beta = input_99_beta_0_to_fp16, epsilon = input_99_epsilon_0_to_fp16, gamma = input_99_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_51_cast_fp16)[name = tensor("input_99_cast_fp16")]; tensor input_101_pad_type_0 = const()[name = tensor("input_101_pad_type_0"), val = tensor("valid")]; tensor input_101_strides_0 = const()[name = tensor("input_101_strides_0"), val = tensor([1, 1])]; tensor input_101_pad_0 = const()[name = tensor("input_101_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_101_dilations_0 = const()[name = tensor("input_101_dilations_0"), val = tensor([1, 1])]; tensor input_101_groups_0 = const()[name = tensor("input_101_groups_0"), val = tensor(1)]; tensor layers_12_fc1_weight_to_fp16 = const()[name = tensor("layers_12_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(320563648)))]; tensor layers_12_fc1_bias_to_fp16 = const()[name = tensor("layers_12_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(328952320)))]; tensor input_101_cast_fp16 = conv(bias = layers_12_fc1_bias_to_fp16, dilations = input_101_dilations_0, groups = input_101_groups_0, pad = input_101_pad_0, pad_type = input_101_pad_type_0, strides = input_101_strides_0, weight = layers_12_fc1_weight_to_fp16, x = input_99_cast_fp16)[name = tensor("input_101_cast_fp16")]; tensor input_103_mode_0 = const()[name = tensor("input_103_mode_0"), val = tensor("EXACT")]; tensor input_103_cast_fp16 = gelu(mode = input_103_mode_0, x = input_101_cast_fp16)[name = tensor("input_103_cast_fp16")]; tensor hidden_states_29_pad_type_0 = const()[name = tensor("hidden_states_29_pad_type_0"), val = tensor("valid")]; tensor hidden_states_29_strides_0 = const()[name = tensor("hidden_states_29_strides_0"), val = tensor([1, 1])]; tensor hidden_states_29_pad_0 = const()[name = tensor("hidden_states_29_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_29_dilations_0 = const()[name = tensor("hidden_states_29_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_29_groups_0 = const()[name = tensor("hidden_states_29_groups_0"), val = tensor(1)]; tensor layers_12_fc2_weight_to_fp16 = const()[name = tensor("layers_12_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(328960576)))]; tensor layers_12_fc2_bias_to_fp16 = const()[name = tensor("layers_12_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(337349248)))]; tensor hidden_states_29_cast_fp16 = conv(bias = layers_12_fc2_bias_to_fp16, dilations = hidden_states_29_dilations_0, groups = hidden_states_29_groups_0, pad = hidden_states_29_pad_0, pad_type = hidden_states_29_pad_type_0, strides = hidden_states_29_strides_0, weight = layers_12_fc2_weight_to_fp16, x = input_103_cast_fp16)[name = tensor("hidden_states_29_cast_fp16")]; tensor inputs_53_cast_fp16 = add(x = inputs_51_cast_fp16, y = hidden_states_29_cast_fp16)[name = tensor("inputs_53_cast_fp16")]; tensor var_1718 = const()[name = tensor("op_1718"), val = tensor(3)]; tensor out_53_axes_0 = const()[name = tensor("out_53_axes_0"), val = tensor([1])]; tensor var_1740_to_fp16 = const()[name = tensor("op_1740_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_53_cast_fp16 = layer_norm(axes = out_53_axes_0, epsilon = var_1740_to_fp16, x = inputs_53_cast_fp16)[name = tensor("out_53_cast_fp16")]; tensor obj_53_gamma_0_to_fp16 = const()[name = tensor("obj_53_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(337351360)))]; tensor obj_53_beta_0_to_fp16 = const()[name = tensor("obj_53_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(337353472)))]; tensor obj_53_epsilon_0_to_fp16 = const()[name = tensor("obj_53_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_53_cast_fp16 = batch_norm(beta = obj_53_beta_0_to_fp16, epsilon = obj_53_epsilon_0_to_fp16, gamma = obj_53_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_53_cast_fp16)[name = tensor("obj_53_cast_fp16")]; tensor query_27_pad_type_0 = const()[name = tensor("query_27_pad_type_0"), val = tensor("valid")]; tensor query_27_strides_0 = const()[name = tensor("query_27_strides_0"), val = tensor([1, 1])]; tensor query_27_pad_0 = const()[name = tensor("query_27_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_27_dilations_0 = const()[name = tensor("query_27_dilations_0"), val = tensor([1, 1])]; tensor query_27_groups_0 = const()[name = tensor("query_27_groups_0"), val = tensor(1)]; tensor layers_13_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_13_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(337355584)))]; tensor layers_13_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_13_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(339452800)))]; tensor query_27_cast_fp16 = conv(bias = layers_13_self_attn_q_proj_bias_to_fp16, dilations = query_27_dilations_0, groups = query_27_groups_0, pad = query_27_pad_0, pad_type = query_27_pad_type_0, strides = query_27_strides_0, weight = layers_13_self_attn_q_proj_weight_to_fp16, x = obj_53_cast_fp16)[name = tensor("query_27_cast_fp16")]; tensor key_27_pad_type_0 = const()[name = tensor("key_27_pad_type_0"), val = tensor("valid")]; tensor key_27_strides_0 = const()[name = tensor("key_27_strides_0"), val = tensor([1, 1])]; tensor key_27_pad_0 = const()[name = tensor("key_27_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_27_dilations_0 = const()[name = tensor("key_27_dilations_0"), val = tensor([1, 1])]; tensor key_27_groups_0 = const()[name = tensor("key_27_groups_0"), val = tensor(1)]; tensor layers_13_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_13_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(339454912)))]; tensor key_27_cast_fp16 = conv(dilations = key_27_dilations_0, groups = key_27_groups_0, pad = key_27_pad_0, pad_type = key_27_pad_type_0, strides = key_27_strides_0, weight = layers_13_self_attn_k_proj_weight_to_fp16, x = obj_53_cast_fp16)[name = tensor("key_27_cast_fp16")]; tensor value_27_pad_type_0 = const()[name = tensor("value_27_pad_type_0"), val = tensor("valid")]; tensor value_27_strides_0 = const()[name = tensor("value_27_strides_0"), val = tensor([1, 1])]; tensor value_27_pad_0 = const()[name = tensor("value_27_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_27_dilations_0 = const()[name = tensor("value_27_dilations_0"), val = tensor([1, 1])]; tensor value_27_groups_0 = const()[name = tensor("value_27_groups_0"), val = tensor(1)]; tensor layers_13_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_13_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(341552128)))]; tensor layers_13_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_13_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(343649344)))]; tensor value_27_cast_fp16 = conv(bias = layers_13_self_attn_v_proj_bias_to_fp16, dilations = value_27_dilations_0, groups = value_27_groups_0, pad = value_27_pad_0, pad_type = value_27_pad_type_0, strides = value_27_strides_0, weight = layers_13_self_attn_v_proj_weight_to_fp16, x = obj_53_cast_fp16)[name = tensor("value_27_cast_fp16")]; tensor var_1776 = const()[name = tensor("op_1776"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_27_cast_fp16 = reshape(shape = var_1776, x = query_27_cast_fp16)[name = tensor("mh_q_27_cast_fp16")]; tensor var_1778_to_fp16 = const()[name = tensor("op_1778_to_fp16"), val = tensor(0x1p-3)]; tensor var_1779_cast_fp16 = mul(x = mh_q_27_cast_fp16, y = var_1778_to_fp16)[name = tensor("op_1779_cast_fp16")]; tensor var_1782 = const()[name = tensor("op_1782"), val = tensor([1, 16, 64, 1500])]; tensor var_1783_cast_fp16 = reshape(shape = var_1782, x = key_27_cast_fp16)[name = tensor("op_1783_cast_fp16")]; tensor mh_w_27_transpose_x_0 = const()[name = tensor("mh_w_27_transpose_x_0"), val = tensor(true)]; tensor mh_w_27_transpose_y_0 = const()[name = tensor("mh_w_27_transpose_y_0"), val = tensor(false)]; tensor mh_w_27_cast_fp16 = matmul(transpose_x = mh_w_27_transpose_x_0, transpose_y = mh_w_27_transpose_y_0, x = var_1779_cast_fp16, y = var_1783_cast_fp16)[name = tensor("mh_w_27_cast_fp16")]; tensor var_1786_cast_fp16 = softmax(axis = var_1718, x = mh_w_27_cast_fp16)[name = tensor("op_1786_cast_fp16")]; tensor var_1787 = const()[name = tensor("op_1787"), val = tensor([1, 16, 64, 1500])]; tensor var_1788_cast_fp16 = reshape(shape = var_1787, x = value_27_cast_fp16)[name = tensor("op_1788_cast_fp16")]; tensor attn_27_transpose_x_0 = const()[name = tensor("attn_27_transpose_x_0"), val = tensor(false)]; tensor attn_27_transpose_y_0 = const()[name = tensor("attn_27_transpose_y_0"), val = tensor(true)]; tensor attn_27_cast_fp16 = matmul(transpose_x = attn_27_transpose_x_0, transpose_y = attn_27_transpose_y_0, x = var_1788_cast_fp16, y = var_1786_cast_fp16)[name = tensor("attn_27_cast_fp16")]; tensor var_1791 = const()[name = tensor("op_1791"), val = tensor([1, 1024, 1, 1500])]; tensor input_105_cast_fp16 = reshape(shape = var_1791, x = attn_27_cast_fp16)[name = tensor("input_105_cast_fp16")]; tensor obj_55_pad_type_0 = const()[name = tensor("obj_55_pad_type_0"), val = tensor("valid")]; tensor obj_55_strides_0 = const()[name = tensor("obj_55_strides_0"), val = tensor([1, 1])]; tensor obj_55_pad_0 = const()[name = tensor("obj_55_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_55_dilations_0 = const()[name = tensor("obj_55_dilations_0"), val = tensor([1, 1])]; tensor obj_55_groups_0 = const()[name = tensor("obj_55_groups_0"), val = tensor(1)]; tensor layers_13_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_13_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(343651456)))]; tensor layers_13_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_13_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(345748672)))]; tensor obj_55_cast_fp16 = conv(bias = layers_13_self_attn_o_proj_bias_to_fp16, dilations = obj_55_dilations_0, groups = obj_55_groups_0, pad = obj_55_pad_0, pad_type = obj_55_pad_type_0, strides = obj_55_strides_0, weight = layers_13_self_attn_o_proj_weight_to_fp16, x = input_105_cast_fp16)[name = tensor("obj_55_cast_fp16")]; tensor inputs_55_cast_fp16 = add(x = inputs_53_cast_fp16, y = obj_55_cast_fp16)[name = tensor("inputs_55_cast_fp16")]; tensor out_55_axes_0 = const()[name = tensor("out_55_axes_0"), val = tensor([1])]; tensor var_1809_to_fp16 = const()[name = tensor("op_1809_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_55_cast_fp16 = layer_norm(axes = out_55_axes_0, epsilon = var_1809_to_fp16, x = inputs_55_cast_fp16)[name = tensor("out_55_cast_fp16")]; tensor input_107_gamma_0_to_fp16 = const()[name = tensor("input_107_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(345750784)))]; tensor input_107_beta_0_to_fp16 = const()[name = tensor("input_107_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(345752896)))]; tensor input_107_epsilon_0_to_fp16 = const()[name = tensor("input_107_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_107_cast_fp16 = batch_norm(beta = input_107_beta_0_to_fp16, epsilon = input_107_epsilon_0_to_fp16, gamma = input_107_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_55_cast_fp16)[name = tensor("input_107_cast_fp16")]; tensor input_109_pad_type_0 = const()[name = tensor("input_109_pad_type_0"), val = tensor("valid")]; tensor input_109_strides_0 = const()[name = tensor("input_109_strides_0"), val = tensor([1, 1])]; tensor input_109_pad_0 = const()[name = tensor("input_109_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_109_dilations_0 = const()[name = tensor("input_109_dilations_0"), val = tensor([1, 1])]; tensor input_109_groups_0 = const()[name = tensor("input_109_groups_0"), val = tensor(1)]; tensor layers_13_fc1_weight_to_fp16 = const()[name = tensor("layers_13_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(345755008)))]; tensor layers_13_fc1_bias_to_fp16 = const()[name = tensor("layers_13_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(354143680)))]; tensor input_109_cast_fp16 = conv(bias = layers_13_fc1_bias_to_fp16, dilations = input_109_dilations_0, groups = input_109_groups_0, pad = input_109_pad_0, pad_type = input_109_pad_type_0, strides = input_109_strides_0, weight = layers_13_fc1_weight_to_fp16, x = input_107_cast_fp16)[name = tensor("input_109_cast_fp16")]; tensor input_111_mode_0 = const()[name = tensor("input_111_mode_0"), val = tensor("EXACT")]; tensor input_111_cast_fp16 = gelu(mode = input_111_mode_0, x = input_109_cast_fp16)[name = tensor("input_111_cast_fp16")]; tensor hidden_states_31_pad_type_0 = const()[name = tensor("hidden_states_31_pad_type_0"), val = tensor("valid")]; tensor hidden_states_31_strides_0 = const()[name = tensor("hidden_states_31_strides_0"), val = tensor([1, 1])]; tensor hidden_states_31_pad_0 = const()[name = tensor("hidden_states_31_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_31_dilations_0 = const()[name = tensor("hidden_states_31_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_31_groups_0 = const()[name = tensor("hidden_states_31_groups_0"), val = tensor(1)]; tensor layers_13_fc2_weight_to_fp16 = const()[name = tensor("layers_13_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(354151936)))]; tensor layers_13_fc2_bias_to_fp16 = const()[name = tensor("layers_13_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(362540608)))]; tensor hidden_states_31_cast_fp16 = conv(bias = layers_13_fc2_bias_to_fp16, dilations = hidden_states_31_dilations_0, groups = hidden_states_31_groups_0, pad = hidden_states_31_pad_0, pad_type = hidden_states_31_pad_type_0, strides = hidden_states_31_strides_0, weight = layers_13_fc2_weight_to_fp16, x = input_111_cast_fp16)[name = tensor("hidden_states_31_cast_fp16")]; tensor inputs_57_cast_fp16 = add(x = inputs_55_cast_fp16, y = hidden_states_31_cast_fp16)[name = tensor("inputs_57_cast_fp16")]; tensor var_1838 = const()[name = tensor("op_1838"), val = tensor(3)]; tensor out_57_axes_0 = const()[name = tensor("out_57_axes_0"), val = tensor([1])]; tensor var_1860_to_fp16 = const()[name = tensor("op_1860_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_57_cast_fp16 = layer_norm(axes = out_57_axes_0, epsilon = var_1860_to_fp16, x = inputs_57_cast_fp16)[name = tensor("out_57_cast_fp16")]; tensor obj_57_gamma_0_to_fp16 = const()[name = tensor("obj_57_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(362542720)))]; tensor obj_57_beta_0_to_fp16 = const()[name = tensor("obj_57_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(362544832)))]; tensor obj_57_epsilon_0_to_fp16 = const()[name = tensor("obj_57_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_57_cast_fp16 = batch_norm(beta = obj_57_beta_0_to_fp16, epsilon = obj_57_epsilon_0_to_fp16, gamma = obj_57_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_57_cast_fp16)[name = tensor("obj_57_cast_fp16")]; tensor query_29_pad_type_0 = const()[name = tensor("query_29_pad_type_0"), val = tensor("valid")]; tensor query_29_strides_0 = const()[name = tensor("query_29_strides_0"), val = tensor([1, 1])]; tensor query_29_pad_0 = const()[name = tensor("query_29_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_29_dilations_0 = const()[name = tensor("query_29_dilations_0"), val = tensor([1, 1])]; tensor query_29_groups_0 = const()[name = tensor("query_29_groups_0"), val = tensor(1)]; tensor layers_14_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_14_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(362546944)))]; tensor layers_14_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_14_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(364644160)))]; tensor query_29_cast_fp16 = conv(bias = layers_14_self_attn_q_proj_bias_to_fp16, dilations = query_29_dilations_0, groups = query_29_groups_0, pad = query_29_pad_0, pad_type = query_29_pad_type_0, strides = query_29_strides_0, weight = layers_14_self_attn_q_proj_weight_to_fp16, x = obj_57_cast_fp16)[name = tensor("query_29_cast_fp16")]; tensor key_29_pad_type_0 = const()[name = tensor("key_29_pad_type_0"), val = tensor("valid")]; tensor key_29_strides_0 = const()[name = tensor("key_29_strides_0"), val = tensor([1, 1])]; tensor key_29_pad_0 = const()[name = tensor("key_29_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_29_dilations_0 = const()[name = tensor("key_29_dilations_0"), val = tensor([1, 1])]; tensor key_29_groups_0 = const()[name = tensor("key_29_groups_0"), val = tensor(1)]; tensor layers_14_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_14_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(364646272)))]; tensor key_29_cast_fp16 = conv(dilations = key_29_dilations_0, groups = key_29_groups_0, pad = key_29_pad_0, pad_type = key_29_pad_type_0, strides = key_29_strides_0, weight = layers_14_self_attn_k_proj_weight_to_fp16, x = obj_57_cast_fp16)[name = tensor("key_29_cast_fp16")]; tensor value_29_pad_type_0 = const()[name = tensor("value_29_pad_type_0"), val = tensor("valid")]; tensor value_29_strides_0 = const()[name = tensor("value_29_strides_0"), val = tensor([1, 1])]; tensor value_29_pad_0 = const()[name = tensor("value_29_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_29_dilations_0 = const()[name = tensor("value_29_dilations_0"), val = tensor([1, 1])]; tensor value_29_groups_0 = const()[name = tensor("value_29_groups_0"), val = tensor(1)]; tensor layers_14_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_14_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(366743488)))]; tensor layers_14_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_14_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(368840704)))]; tensor value_29_cast_fp16 = conv(bias = layers_14_self_attn_v_proj_bias_to_fp16, dilations = value_29_dilations_0, groups = value_29_groups_0, pad = value_29_pad_0, pad_type = value_29_pad_type_0, strides = value_29_strides_0, weight = layers_14_self_attn_v_proj_weight_to_fp16, x = obj_57_cast_fp16)[name = tensor("value_29_cast_fp16")]; tensor var_1896 = const()[name = tensor("op_1896"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_29_cast_fp16 = reshape(shape = var_1896, x = query_29_cast_fp16)[name = tensor("mh_q_29_cast_fp16")]; tensor var_1898_to_fp16 = const()[name = tensor("op_1898_to_fp16"), val = tensor(0x1p-3)]; tensor var_1899_cast_fp16 = mul(x = mh_q_29_cast_fp16, y = var_1898_to_fp16)[name = tensor("op_1899_cast_fp16")]; tensor var_1902 = const()[name = tensor("op_1902"), val = tensor([1, 16, 64, 1500])]; tensor var_1903_cast_fp16 = reshape(shape = var_1902, x = key_29_cast_fp16)[name = tensor("op_1903_cast_fp16")]; tensor mh_w_29_transpose_x_0 = const()[name = tensor("mh_w_29_transpose_x_0"), val = tensor(true)]; tensor mh_w_29_transpose_y_0 = const()[name = tensor("mh_w_29_transpose_y_0"), val = tensor(false)]; tensor mh_w_29_cast_fp16 = matmul(transpose_x = mh_w_29_transpose_x_0, transpose_y = mh_w_29_transpose_y_0, x = var_1899_cast_fp16, y = var_1903_cast_fp16)[name = tensor("mh_w_29_cast_fp16")]; tensor var_1906_cast_fp16 = softmax(axis = var_1838, x = mh_w_29_cast_fp16)[name = tensor("op_1906_cast_fp16")]; tensor var_1907 = const()[name = tensor("op_1907"), val = tensor([1, 16, 64, 1500])]; tensor var_1908_cast_fp16 = reshape(shape = var_1907, x = value_29_cast_fp16)[name = tensor("op_1908_cast_fp16")]; tensor attn_29_transpose_x_0 = const()[name = tensor("attn_29_transpose_x_0"), val = tensor(false)]; tensor attn_29_transpose_y_0 = const()[name = tensor("attn_29_transpose_y_0"), val = tensor(true)]; tensor attn_29_cast_fp16 = matmul(transpose_x = attn_29_transpose_x_0, transpose_y = attn_29_transpose_y_0, x = var_1908_cast_fp16, y = var_1906_cast_fp16)[name = tensor("attn_29_cast_fp16")]; tensor var_1911 = const()[name = tensor("op_1911"), val = tensor([1, 1024, 1, 1500])]; tensor input_113_cast_fp16 = reshape(shape = var_1911, x = attn_29_cast_fp16)[name = tensor("input_113_cast_fp16")]; tensor obj_59_pad_type_0 = const()[name = tensor("obj_59_pad_type_0"), val = tensor("valid")]; tensor obj_59_strides_0 = const()[name = tensor("obj_59_strides_0"), val = tensor([1, 1])]; tensor obj_59_pad_0 = const()[name = tensor("obj_59_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_59_dilations_0 = const()[name = tensor("obj_59_dilations_0"), val = tensor([1, 1])]; tensor obj_59_groups_0 = const()[name = tensor("obj_59_groups_0"), val = tensor(1)]; tensor layers_14_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_14_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(368842816)))]; tensor layers_14_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_14_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(370940032)))]; tensor obj_59_cast_fp16 = conv(bias = layers_14_self_attn_o_proj_bias_to_fp16, dilations = obj_59_dilations_0, groups = obj_59_groups_0, pad = obj_59_pad_0, pad_type = obj_59_pad_type_0, strides = obj_59_strides_0, weight = layers_14_self_attn_o_proj_weight_to_fp16, x = input_113_cast_fp16)[name = tensor("obj_59_cast_fp16")]; tensor inputs_59_cast_fp16 = add(x = inputs_57_cast_fp16, y = obj_59_cast_fp16)[name = tensor("inputs_59_cast_fp16")]; tensor out_59_axes_0 = const()[name = tensor("out_59_axes_0"), val = tensor([1])]; tensor var_1929_to_fp16 = const()[name = tensor("op_1929_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_59_cast_fp16 = layer_norm(axes = out_59_axes_0, epsilon = var_1929_to_fp16, x = inputs_59_cast_fp16)[name = tensor("out_59_cast_fp16")]; tensor input_115_gamma_0_to_fp16 = const()[name = tensor("input_115_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(370942144)))]; tensor input_115_beta_0_to_fp16 = const()[name = tensor("input_115_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(370944256)))]; tensor input_115_epsilon_0_to_fp16 = const()[name = tensor("input_115_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_115_cast_fp16 = batch_norm(beta = input_115_beta_0_to_fp16, epsilon = input_115_epsilon_0_to_fp16, gamma = input_115_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_59_cast_fp16)[name = tensor("input_115_cast_fp16")]; tensor input_117_pad_type_0 = const()[name = tensor("input_117_pad_type_0"), val = tensor("valid")]; tensor input_117_strides_0 = const()[name = tensor("input_117_strides_0"), val = tensor([1, 1])]; tensor input_117_pad_0 = const()[name = tensor("input_117_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_117_dilations_0 = const()[name = tensor("input_117_dilations_0"), val = tensor([1, 1])]; tensor input_117_groups_0 = const()[name = tensor("input_117_groups_0"), val = tensor(1)]; tensor layers_14_fc1_weight_to_fp16 = const()[name = tensor("layers_14_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(370946368)))]; tensor layers_14_fc1_bias_to_fp16 = const()[name = tensor("layers_14_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(379335040)))]; tensor input_117_cast_fp16 = conv(bias = layers_14_fc1_bias_to_fp16, dilations = input_117_dilations_0, groups = input_117_groups_0, pad = input_117_pad_0, pad_type = input_117_pad_type_0, strides = input_117_strides_0, weight = layers_14_fc1_weight_to_fp16, x = input_115_cast_fp16)[name = tensor("input_117_cast_fp16")]; tensor input_119_mode_0 = const()[name = tensor("input_119_mode_0"), val = tensor("EXACT")]; tensor input_119_cast_fp16 = gelu(mode = input_119_mode_0, x = input_117_cast_fp16)[name = tensor("input_119_cast_fp16")]; tensor hidden_states_33_pad_type_0 = const()[name = tensor("hidden_states_33_pad_type_0"), val = tensor("valid")]; tensor hidden_states_33_strides_0 = const()[name = tensor("hidden_states_33_strides_0"), val = tensor([1, 1])]; tensor hidden_states_33_pad_0 = const()[name = tensor("hidden_states_33_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_33_dilations_0 = const()[name = tensor("hidden_states_33_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_33_groups_0 = const()[name = tensor("hidden_states_33_groups_0"), val = tensor(1)]; tensor layers_14_fc2_weight_to_fp16 = const()[name = tensor("layers_14_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(379343296)))]; tensor layers_14_fc2_bias_to_fp16 = const()[name = tensor("layers_14_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(387731968)))]; tensor hidden_states_33_cast_fp16 = conv(bias = layers_14_fc2_bias_to_fp16, dilations = hidden_states_33_dilations_0, groups = hidden_states_33_groups_0, pad = hidden_states_33_pad_0, pad_type = hidden_states_33_pad_type_0, strides = hidden_states_33_strides_0, weight = layers_14_fc2_weight_to_fp16, x = input_119_cast_fp16)[name = tensor("hidden_states_33_cast_fp16")]; tensor inputs_61_cast_fp16 = add(x = inputs_59_cast_fp16, y = hidden_states_33_cast_fp16)[name = tensor("inputs_61_cast_fp16")]; tensor var_1958 = const()[name = tensor("op_1958"), val = tensor(3)]; tensor out_61_axes_0 = const()[name = tensor("out_61_axes_0"), val = tensor([1])]; tensor var_1980_to_fp16 = const()[name = tensor("op_1980_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_61_cast_fp16 = layer_norm(axes = out_61_axes_0, epsilon = var_1980_to_fp16, x = inputs_61_cast_fp16)[name = tensor("out_61_cast_fp16")]; tensor obj_61_gamma_0_to_fp16 = const()[name = tensor("obj_61_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(387734080)))]; tensor obj_61_beta_0_to_fp16 = const()[name = tensor("obj_61_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(387736192)))]; tensor obj_61_epsilon_0_to_fp16 = const()[name = tensor("obj_61_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_61_cast_fp16 = batch_norm(beta = obj_61_beta_0_to_fp16, epsilon = obj_61_epsilon_0_to_fp16, gamma = obj_61_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_61_cast_fp16)[name = tensor("obj_61_cast_fp16")]; tensor query_31_pad_type_0 = const()[name = tensor("query_31_pad_type_0"), val = tensor("valid")]; tensor query_31_strides_0 = const()[name = tensor("query_31_strides_0"), val = tensor([1, 1])]; tensor query_31_pad_0 = const()[name = tensor("query_31_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_31_dilations_0 = const()[name = tensor("query_31_dilations_0"), val = tensor([1, 1])]; tensor query_31_groups_0 = const()[name = tensor("query_31_groups_0"), val = tensor(1)]; tensor layers_15_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_15_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(387738304)))]; tensor layers_15_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_15_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(389835520)))]; tensor query_31_cast_fp16 = conv(bias = layers_15_self_attn_q_proj_bias_to_fp16, dilations = query_31_dilations_0, groups = query_31_groups_0, pad = query_31_pad_0, pad_type = query_31_pad_type_0, strides = query_31_strides_0, weight = layers_15_self_attn_q_proj_weight_to_fp16, x = obj_61_cast_fp16)[name = tensor("query_31_cast_fp16")]; tensor key_31_pad_type_0 = const()[name = tensor("key_31_pad_type_0"), val = tensor("valid")]; tensor key_31_strides_0 = const()[name = tensor("key_31_strides_0"), val = tensor([1, 1])]; tensor key_31_pad_0 = const()[name = tensor("key_31_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_31_dilations_0 = const()[name = tensor("key_31_dilations_0"), val = tensor([1, 1])]; tensor key_31_groups_0 = const()[name = tensor("key_31_groups_0"), val = tensor(1)]; tensor layers_15_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_15_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(389837632)))]; tensor key_31_cast_fp16 = conv(dilations = key_31_dilations_0, groups = key_31_groups_0, pad = key_31_pad_0, pad_type = key_31_pad_type_0, strides = key_31_strides_0, weight = layers_15_self_attn_k_proj_weight_to_fp16, x = obj_61_cast_fp16)[name = tensor("key_31_cast_fp16")]; tensor value_31_pad_type_0 = const()[name = tensor("value_31_pad_type_0"), val = tensor("valid")]; tensor value_31_strides_0 = const()[name = tensor("value_31_strides_0"), val = tensor([1, 1])]; tensor value_31_pad_0 = const()[name = tensor("value_31_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_31_dilations_0 = const()[name = tensor("value_31_dilations_0"), val = tensor([1, 1])]; tensor value_31_groups_0 = const()[name = tensor("value_31_groups_0"), val = tensor(1)]; tensor layers_15_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_15_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(391934848)))]; tensor layers_15_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_15_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(394032064)))]; tensor value_31_cast_fp16 = conv(bias = layers_15_self_attn_v_proj_bias_to_fp16, dilations = value_31_dilations_0, groups = value_31_groups_0, pad = value_31_pad_0, pad_type = value_31_pad_type_0, strides = value_31_strides_0, weight = layers_15_self_attn_v_proj_weight_to_fp16, x = obj_61_cast_fp16)[name = tensor("value_31_cast_fp16")]; tensor var_2016 = const()[name = tensor("op_2016"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_31_cast_fp16 = reshape(shape = var_2016, x = query_31_cast_fp16)[name = tensor("mh_q_31_cast_fp16")]; tensor var_2018_to_fp16 = const()[name = tensor("op_2018_to_fp16"), val = tensor(0x1p-3)]; tensor var_2019_cast_fp16 = mul(x = mh_q_31_cast_fp16, y = var_2018_to_fp16)[name = tensor("op_2019_cast_fp16")]; tensor var_2022 = const()[name = tensor("op_2022"), val = tensor([1, 16, 64, 1500])]; tensor var_2023_cast_fp16 = reshape(shape = var_2022, x = key_31_cast_fp16)[name = tensor("op_2023_cast_fp16")]; tensor mh_w_31_transpose_x_0 = const()[name = tensor("mh_w_31_transpose_x_0"), val = tensor(true)]; tensor mh_w_31_transpose_y_0 = const()[name = tensor("mh_w_31_transpose_y_0"), val = tensor(false)]; tensor mh_w_31_cast_fp16 = matmul(transpose_x = mh_w_31_transpose_x_0, transpose_y = mh_w_31_transpose_y_0, x = var_2019_cast_fp16, y = var_2023_cast_fp16)[name = tensor("mh_w_31_cast_fp16")]; tensor var_2026_cast_fp16 = softmax(axis = var_1958, x = mh_w_31_cast_fp16)[name = tensor("op_2026_cast_fp16")]; tensor var_2027 = const()[name = tensor("op_2027"), val = tensor([1, 16, 64, 1500])]; tensor var_2028_cast_fp16 = reshape(shape = var_2027, x = value_31_cast_fp16)[name = tensor("op_2028_cast_fp16")]; tensor attn_31_transpose_x_0 = const()[name = tensor("attn_31_transpose_x_0"), val = tensor(false)]; tensor attn_31_transpose_y_0 = const()[name = tensor("attn_31_transpose_y_0"), val = tensor(true)]; tensor attn_31_cast_fp16 = matmul(transpose_x = attn_31_transpose_x_0, transpose_y = attn_31_transpose_y_0, x = var_2028_cast_fp16, y = var_2026_cast_fp16)[name = tensor("attn_31_cast_fp16")]; tensor var_2031 = const()[name = tensor("op_2031"), val = tensor([1, 1024, 1, 1500])]; tensor input_121_cast_fp16 = reshape(shape = var_2031, x = attn_31_cast_fp16)[name = tensor("input_121_cast_fp16")]; tensor obj_63_pad_type_0 = const()[name = tensor("obj_63_pad_type_0"), val = tensor("valid")]; tensor obj_63_strides_0 = const()[name = tensor("obj_63_strides_0"), val = tensor([1, 1])]; tensor obj_63_pad_0 = const()[name = tensor("obj_63_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_63_dilations_0 = const()[name = tensor("obj_63_dilations_0"), val = tensor([1, 1])]; tensor obj_63_groups_0 = const()[name = tensor("obj_63_groups_0"), val = tensor(1)]; tensor layers_15_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_15_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(394034176)))]; tensor layers_15_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_15_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(396131392)))]; tensor obj_63_cast_fp16 = conv(bias = layers_15_self_attn_o_proj_bias_to_fp16, dilations = obj_63_dilations_0, groups = obj_63_groups_0, pad = obj_63_pad_0, pad_type = obj_63_pad_type_0, strides = obj_63_strides_0, weight = layers_15_self_attn_o_proj_weight_to_fp16, x = input_121_cast_fp16)[name = tensor("obj_63_cast_fp16")]; tensor inputs_63_cast_fp16 = add(x = inputs_61_cast_fp16, y = obj_63_cast_fp16)[name = tensor("inputs_63_cast_fp16")]; tensor out_63_axes_0 = const()[name = tensor("out_63_axes_0"), val = tensor([1])]; tensor var_2049_to_fp16 = const()[name = tensor("op_2049_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_63_cast_fp16 = layer_norm(axes = out_63_axes_0, epsilon = var_2049_to_fp16, x = inputs_63_cast_fp16)[name = tensor("out_63_cast_fp16")]; tensor input_123_gamma_0_to_fp16 = const()[name = tensor("input_123_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(396133504)))]; tensor input_123_beta_0_to_fp16 = const()[name = tensor("input_123_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(396135616)))]; tensor input_123_epsilon_0_to_fp16 = const()[name = tensor("input_123_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_123_cast_fp16 = batch_norm(beta = input_123_beta_0_to_fp16, epsilon = input_123_epsilon_0_to_fp16, gamma = input_123_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_63_cast_fp16)[name = tensor("input_123_cast_fp16")]; tensor input_125_pad_type_0 = const()[name = tensor("input_125_pad_type_0"), val = tensor("valid")]; tensor input_125_strides_0 = const()[name = tensor("input_125_strides_0"), val = tensor([1, 1])]; tensor input_125_pad_0 = const()[name = tensor("input_125_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_125_dilations_0 = const()[name = tensor("input_125_dilations_0"), val = tensor([1, 1])]; tensor input_125_groups_0 = const()[name = tensor("input_125_groups_0"), val = tensor(1)]; tensor layers_15_fc1_weight_to_fp16 = const()[name = tensor("layers_15_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(396137728)))]; tensor layers_15_fc1_bias_to_fp16 = const()[name = tensor("layers_15_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(404526400)))]; tensor input_125_cast_fp16 = conv(bias = layers_15_fc1_bias_to_fp16, dilations = input_125_dilations_0, groups = input_125_groups_0, pad = input_125_pad_0, pad_type = input_125_pad_type_0, strides = input_125_strides_0, weight = layers_15_fc1_weight_to_fp16, x = input_123_cast_fp16)[name = tensor("input_125_cast_fp16")]; tensor input_127_mode_0 = const()[name = tensor("input_127_mode_0"), val = tensor("EXACT")]; tensor input_127_cast_fp16 = gelu(mode = input_127_mode_0, x = input_125_cast_fp16)[name = tensor("input_127_cast_fp16")]; tensor hidden_states_35_pad_type_0 = const()[name = tensor("hidden_states_35_pad_type_0"), val = tensor("valid")]; tensor hidden_states_35_strides_0 = const()[name = tensor("hidden_states_35_strides_0"), val = tensor([1, 1])]; tensor hidden_states_35_pad_0 = const()[name = tensor("hidden_states_35_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_35_dilations_0 = const()[name = tensor("hidden_states_35_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_35_groups_0 = const()[name = tensor("hidden_states_35_groups_0"), val = tensor(1)]; tensor layers_15_fc2_weight_to_fp16 = const()[name = tensor("layers_15_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(404534656)))]; tensor layers_15_fc2_bias_to_fp16 = const()[name = tensor("layers_15_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(412923328)))]; tensor hidden_states_35_cast_fp16 = conv(bias = layers_15_fc2_bias_to_fp16, dilations = hidden_states_35_dilations_0, groups = hidden_states_35_groups_0, pad = hidden_states_35_pad_0, pad_type = hidden_states_35_pad_type_0, strides = hidden_states_35_strides_0, weight = layers_15_fc2_weight_to_fp16, x = input_127_cast_fp16)[name = tensor("hidden_states_35_cast_fp16")]; tensor inputs_65_cast_fp16 = add(x = inputs_63_cast_fp16, y = hidden_states_35_cast_fp16)[name = tensor("inputs_65_cast_fp16")]; tensor var_2078 = const()[name = tensor("op_2078"), val = tensor(3)]; tensor out_65_axes_0 = const()[name = tensor("out_65_axes_0"), val = tensor([1])]; tensor var_2100_to_fp16 = const()[name = tensor("op_2100_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_65_cast_fp16 = layer_norm(axes = out_65_axes_0, epsilon = var_2100_to_fp16, x = inputs_65_cast_fp16)[name = tensor("out_65_cast_fp16")]; tensor obj_65_gamma_0_to_fp16 = const()[name = tensor("obj_65_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(412925440)))]; tensor obj_65_beta_0_to_fp16 = const()[name = tensor("obj_65_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(412927552)))]; tensor obj_65_epsilon_0_to_fp16 = const()[name = tensor("obj_65_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_65_cast_fp16 = batch_norm(beta = obj_65_beta_0_to_fp16, epsilon = obj_65_epsilon_0_to_fp16, gamma = obj_65_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_65_cast_fp16)[name = tensor("obj_65_cast_fp16")]; tensor query_33_pad_type_0 = const()[name = tensor("query_33_pad_type_0"), val = tensor("valid")]; tensor query_33_strides_0 = const()[name = tensor("query_33_strides_0"), val = tensor([1, 1])]; tensor query_33_pad_0 = const()[name = tensor("query_33_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_33_dilations_0 = const()[name = tensor("query_33_dilations_0"), val = tensor([1, 1])]; tensor query_33_groups_0 = const()[name = tensor("query_33_groups_0"), val = tensor(1)]; tensor layers_16_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_16_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(412929664)))]; tensor layers_16_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_16_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(415026880)))]; tensor query_33_cast_fp16 = conv(bias = layers_16_self_attn_q_proj_bias_to_fp16, dilations = query_33_dilations_0, groups = query_33_groups_0, pad = query_33_pad_0, pad_type = query_33_pad_type_0, strides = query_33_strides_0, weight = layers_16_self_attn_q_proj_weight_to_fp16, x = obj_65_cast_fp16)[name = tensor("query_33_cast_fp16")]; tensor key_33_pad_type_0 = const()[name = tensor("key_33_pad_type_0"), val = tensor("valid")]; tensor key_33_strides_0 = const()[name = tensor("key_33_strides_0"), val = tensor([1, 1])]; tensor key_33_pad_0 = const()[name = tensor("key_33_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_33_dilations_0 = const()[name = tensor("key_33_dilations_0"), val = tensor([1, 1])]; tensor key_33_groups_0 = const()[name = tensor("key_33_groups_0"), val = tensor(1)]; tensor layers_16_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_16_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(415028992)))]; tensor key_33_cast_fp16 = conv(dilations = key_33_dilations_0, groups = key_33_groups_0, pad = key_33_pad_0, pad_type = key_33_pad_type_0, strides = key_33_strides_0, weight = layers_16_self_attn_k_proj_weight_to_fp16, x = obj_65_cast_fp16)[name = tensor("key_33_cast_fp16")]; tensor value_33_pad_type_0 = const()[name = tensor("value_33_pad_type_0"), val = tensor("valid")]; tensor value_33_strides_0 = const()[name = tensor("value_33_strides_0"), val = tensor([1, 1])]; tensor value_33_pad_0 = const()[name = tensor("value_33_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_33_dilations_0 = const()[name = tensor("value_33_dilations_0"), val = tensor([1, 1])]; tensor value_33_groups_0 = const()[name = tensor("value_33_groups_0"), val = tensor(1)]; tensor layers_16_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_16_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(417126208)))]; tensor layers_16_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_16_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(419223424)))]; tensor value_33_cast_fp16 = conv(bias = layers_16_self_attn_v_proj_bias_to_fp16, dilations = value_33_dilations_0, groups = value_33_groups_0, pad = value_33_pad_0, pad_type = value_33_pad_type_0, strides = value_33_strides_0, weight = layers_16_self_attn_v_proj_weight_to_fp16, x = obj_65_cast_fp16)[name = tensor("value_33_cast_fp16")]; tensor var_2136 = const()[name = tensor("op_2136"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_33_cast_fp16 = reshape(shape = var_2136, x = query_33_cast_fp16)[name = tensor("mh_q_33_cast_fp16")]; tensor var_2138_to_fp16 = const()[name = tensor("op_2138_to_fp16"), val = tensor(0x1p-3)]; tensor var_2139_cast_fp16 = mul(x = mh_q_33_cast_fp16, y = var_2138_to_fp16)[name = tensor("op_2139_cast_fp16")]; tensor var_2142 = const()[name = tensor("op_2142"), val = tensor([1, 16, 64, 1500])]; tensor var_2143_cast_fp16 = reshape(shape = var_2142, x = key_33_cast_fp16)[name = tensor("op_2143_cast_fp16")]; tensor mh_w_33_transpose_x_0 = const()[name = tensor("mh_w_33_transpose_x_0"), val = tensor(true)]; tensor mh_w_33_transpose_y_0 = const()[name = tensor("mh_w_33_transpose_y_0"), val = tensor(false)]; tensor mh_w_33_cast_fp16 = matmul(transpose_x = mh_w_33_transpose_x_0, transpose_y = mh_w_33_transpose_y_0, x = var_2139_cast_fp16, y = var_2143_cast_fp16)[name = tensor("mh_w_33_cast_fp16")]; tensor var_2146_cast_fp16 = softmax(axis = var_2078, x = mh_w_33_cast_fp16)[name = tensor("op_2146_cast_fp16")]; tensor var_2147 = const()[name = tensor("op_2147"), val = tensor([1, 16, 64, 1500])]; tensor var_2148_cast_fp16 = reshape(shape = var_2147, x = value_33_cast_fp16)[name = tensor("op_2148_cast_fp16")]; tensor attn_33_transpose_x_0 = const()[name = tensor("attn_33_transpose_x_0"), val = tensor(false)]; tensor attn_33_transpose_y_0 = const()[name = tensor("attn_33_transpose_y_0"), val = tensor(true)]; tensor attn_33_cast_fp16 = matmul(transpose_x = attn_33_transpose_x_0, transpose_y = attn_33_transpose_y_0, x = var_2148_cast_fp16, y = var_2146_cast_fp16)[name = tensor("attn_33_cast_fp16")]; tensor var_2151 = const()[name = tensor("op_2151"), val = tensor([1, 1024, 1, 1500])]; tensor input_129_cast_fp16 = reshape(shape = var_2151, x = attn_33_cast_fp16)[name = tensor("input_129_cast_fp16")]; tensor obj_67_pad_type_0 = const()[name = tensor("obj_67_pad_type_0"), val = tensor("valid")]; tensor obj_67_strides_0 = const()[name = tensor("obj_67_strides_0"), val = tensor([1, 1])]; tensor obj_67_pad_0 = const()[name = tensor("obj_67_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_67_dilations_0 = const()[name = tensor("obj_67_dilations_0"), val = tensor([1, 1])]; tensor obj_67_groups_0 = const()[name = tensor("obj_67_groups_0"), val = tensor(1)]; tensor layers_16_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_16_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(419225536)))]; tensor layers_16_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_16_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(421322752)))]; tensor obj_67_cast_fp16 = conv(bias = layers_16_self_attn_o_proj_bias_to_fp16, dilations = obj_67_dilations_0, groups = obj_67_groups_0, pad = obj_67_pad_0, pad_type = obj_67_pad_type_0, strides = obj_67_strides_0, weight = layers_16_self_attn_o_proj_weight_to_fp16, x = input_129_cast_fp16)[name = tensor("obj_67_cast_fp16")]; tensor inputs_67_cast_fp16 = add(x = inputs_65_cast_fp16, y = obj_67_cast_fp16)[name = tensor("inputs_67_cast_fp16")]; tensor out_67_axes_0 = const()[name = tensor("out_67_axes_0"), val = tensor([1])]; tensor var_2169_to_fp16 = const()[name = tensor("op_2169_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_67_cast_fp16 = layer_norm(axes = out_67_axes_0, epsilon = var_2169_to_fp16, x = inputs_67_cast_fp16)[name = tensor("out_67_cast_fp16")]; tensor input_131_gamma_0_to_fp16 = const()[name = tensor("input_131_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(421324864)))]; tensor input_131_beta_0_to_fp16 = const()[name = tensor("input_131_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(421326976)))]; tensor input_131_epsilon_0_to_fp16 = const()[name = tensor("input_131_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_131_cast_fp16 = batch_norm(beta = input_131_beta_0_to_fp16, epsilon = input_131_epsilon_0_to_fp16, gamma = input_131_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_67_cast_fp16)[name = tensor("input_131_cast_fp16")]; tensor input_133_pad_type_0 = const()[name = tensor("input_133_pad_type_0"), val = tensor("valid")]; tensor input_133_strides_0 = const()[name = tensor("input_133_strides_0"), val = tensor([1, 1])]; tensor input_133_pad_0 = const()[name = tensor("input_133_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_133_dilations_0 = const()[name = tensor("input_133_dilations_0"), val = tensor([1, 1])]; tensor input_133_groups_0 = const()[name = tensor("input_133_groups_0"), val = tensor(1)]; tensor layers_16_fc1_weight_to_fp16 = const()[name = tensor("layers_16_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(421329088)))]; tensor layers_16_fc1_bias_to_fp16 = const()[name = tensor("layers_16_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(429717760)))]; tensor input_133_cast_fp16 = conv(bias = layers_16_fc1_bias_to_fp16, dilations = input_133_dilations_0, groups = input_133_groups_0, pad = input_133_pad_0, pad_type = input_133_pad_type_0, strides = input_133_strides_0, weight = layers_16_fc1_weight_to_fp16, x = input_131_cast_fp16)[name = tensor("input_133_cast_fp16")]; tensor input_135_mode_0 = const()[name = tensor("input_135_mode_0"), val = tensor("EXACT")]; tensor input_135_cast_fp16 = gelu(mode = input_135_mode_0, x = input_133_cast_fp16)[name = tensor("input_135_cast_fp16")]; tensor hidden_states_37_pad_type_0 = const()[name = tensor("hidden_states_37_pad_type_0"), val = tensor("valid")]; tensor hidden_states_37_strides_0 = const()[name = tensor("hidden_states_37_strides_0"), val = tensor([1, 1])]; tensor hidden_states_37_pad_0 = const()[name = tensor("hidden_states_37_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_37_dilations_0 = const()[name = tensor("hidden_states_37_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_37_groups_0 = const()[name = tensor("hidden_states_37_groups_0"), val = tensor(1)]; tensor layers_16_fc2_weight_to_fp16 = const()[name = tensor("layers_16_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(429726016)))]; tensor layers_16_fc2_bias_to_fp16 = const()[name = tensor("layers_16_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(438114688)))]; tensor hidden_states_37_cast_fp16 = conv(bias = layers_16_fc2_bias_to_fp16, dilations = hidden_states_37_dilations_0, groups = hidden_states_37_groups_0, pad = hidden_states_37_pad_0, pad_type = hidden_states_37_pad_type_0, strides = hidden_states_37_strides_0, weight = layers_16_fc2_weight_to_fp16, x = input_135_cast_fp16)[name = tensor("hidden_states_37_cast_fp16")]; tensor inputs_69_cast_fp16 = add(x = inputs_67_cast_fp16, y = hidden_states_37_cast_fp16)[name = tensor("inputs_69_cast_fp16")]; tensor var_2198 = const()[name = tensor("op_2198"), val = tensor(3)]; tensor out_69_axes_0 = const()[name = tensor("out_69_axes_0"), val = tensor([1])]; tensor var_2220_to_fp16 = const()[name = tensor("op_2220_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_69_cast_fp16 = layer_norm(axes = out_69_axes_0, epsilon = var_2220_to_fp16, x = inputs_69_cast_fp16)[name = tensor("out_69_cast_fp16")]; tensor obj_69_gamma_0_to_fp16 = const()[name = tensor("obj_69_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(438116800)))]; tensor obj_69_beta_0_to_fp16 = const()[name = tensor("obj_69_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(438118912)))]; tensor obj_69_epsilon_0_to_fp16 = const()[name = tensor("obj_69_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_69_cast_fp16 = batch_norm(beta = obj_69_beta_0_to_fp16, epsilon = obj_69_epsilon_0_to_fp16, gamma = obj_69_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_69_cast_fp16)[name = tensor("obj_69_cast_fp16")]; tensor query_35_pad_type_0 = const()[name = tensor("query_35_pad_type_0"), val = tensor("valid")]; tensor query_35_strides_0 = const()[name = tensor("query_35_strides_0"), val = tensor([1, 1])]; tensor query_35_pad_0 = const()[name = tensor("query_35_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_35_dilations_0 = const()[name = tensor("query_35_dilations_0"), val = tensor([1, 1])]; tensor query_35_groups_0 = const()[name = tensor("query_35_groups_0"), val = tensor(1)]; tensor layers_17_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_17_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(438121024)))]; tensor layers_17_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_17_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(440218240)))]; tensor query_35_cast_fp16 = conv(bias = layers_17_self_attn_q_proj_bias_to_fp16, dilations = query_35_dilations_0, groups = query_35_groups_0, pad = query_35_pad_0, pad_type = query_35_pad_type_0, strides = query_35_strides_0, weight = layers_17_self_attn_q_proj_weight_to_fp16, x = obj_69_cast_fp16)[name = tensor("query_35_cast_fp16")]; tensor key_35_pad_type_0 = const()[name = tensor("key_35_pad_type_0"), val = tensor("valid")]; tensor key_35_strides_0 = const()[name = tensor("key_35_strides_0"), val = tensor([1, 1])]; tensor key_35_pad_0 = const()[name = tensor("key_35_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_35_dilations_0 = const()[name = tensor("key_35_dilations_0"), val = tensor([1, 1])]; tensor key_35_groups_0 = const()[name = tensor("key_35_groups_0"), val = tensor(1)]; tensor layers_17_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_17_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(440220352)))]; tensor key_35_cast_fp16 = conv(dilations = key_35_dilations_0, groups = key_35_groups_0, pad = key_35_pad_0, pad_type = key_35_pad_type_0, strides = key_35_strides_0, weight = layers_17_self_attn_k_proj_weight_to_fp16, x = obj_69_cast_fp16)[name = tensor("key_35_cast_fp16")]; tensor value_35_pad_type_0 = const()[name = tensor("value_35_pad_type_0"), val = tensor("valid")]; tensor value_35_strides_0 = const()[name = tensor("value_35_strides_0"), val = tensor([1, 1])]; tensor value_35_pad_0 = const()[name = tensor("value_35_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_35_dilations_0 = const()[name = tensor("value_35_dilations_0"), val = tensor([1, 1])]; tensor value_35_groups_0 = const()[name = tensor("value_35_groups_0"), val = tensor(1)]; tensor layers_17_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_17_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(442317568)))]; tensor layers_17_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_17_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(444414784)))]; tensor value_35_cast_fp16 = conv(bias = layers_17_self_attn_v_proj_bias_to_fp16, dilations = value_35_dilations_0, groups = value_35_groups_0, pad = value_35_pad_0, pad_type = value_35_pad_type_0, strides = value_35_strides_0, weight = layers_17_self_attn_v_proj_weight_to_fp16, x = obj_69_cast_fp16)[name = tensor("value_35_cast_fp16")]; tensor var_2256 = const()[name = tensor("op_2256"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_35_cast_fp16 = reshape(shape = var_2256, x = query_35_cast_fp16)[name = tensor("mh_q_35_cast_fp16")]; tensor var_2258_to_fp16 = const()[name = tensor("op_2258_to_fp16"), val = tensor(0x1p-3)]; tensor var_2259_cast_fp16 = mul(x = mh_q_35_cast_fp16, y = var_2258_to_fp16)[name = tensor("op_2259_cast_fp16")]; tensor var_2262 = const()[name = tensor("op_2262"), val = tensor([1, 16, 64, 1500])]; tensor var_2263_cast_fp16 = reshape(shape = var_2262, x = key_35_cast_fp16)[name = tensor("op_2263_cast_fp16")]; tensor mh_w_35_transpose_x_0 = const()[name = tensor("mh_w_35_transpose_x_0"), val = tensor(true)]; tensor mh_w_35_transpose_y_0 = const()[name = tensor("mh_w_35_transpose_y_0"), val = tensor(false)]; tensor mh_w_35_cast_fp16 = matmul(transpose_x = mh_w_35_transpose_x_0, transpose_y = mh_w_35_transpose_y_0, x = var_2259_cast_fp16, y = var_2263_cast_fp16)[name = tensor("mh_w_35_cast_fp16")]; tensor var_2266_cast_fp16 = softmax(axis = var_2198, x = mh_w_35_cast_fp16)[name = tensor("op_2266_cast_fp16")]; tensor var_2267 = const()[name = tensor("op_2267"), val = tensor([1, 16, 64, 1500])]; tensor var_2268_cast_fp16 = reshape(shape = var_2267, x = value_35_cast_fp16)[name = tensor("op_2268_cast_fp16")]; tensor attn_35_transpose_x_0 = const()[name = tensor("attn_35_transpose_x_0"), val = tensor(false)]; tensor attn_35_transpose_y_0 = const()[name = tensor("attn_35_transpose_y_0"), val = tensor(true)]; tensor attn_35_cast_fp16 = matmul(transpose_x = attn_35_transpose_x_0, transpose_y = attn_35_transpose_y_0, x = var_2268_cast_fp16, y = var_2266_cast_fp16)[name = tensor("attn_35_cast_fp16")]; tensor var_2271 = const()[name = tensor("op_2271"), val = tensor([1, 1024, 1, 1500])]; tensor input_137_cast_fp16 = reshape(shape = var_2271, x = attn_35_cast_fp16)[name = tensor("input_137_cast_fp16")]; tensor obj_71_pad_type_0 = const()[name = tensor("obj_71_pad_type_0"), val = tensor("valid")]; tensor obj_71_strides_0 = const()[name = tensor("obj_71_strides_0"), val = tensor([1, 1])]; tensor obj_71_pad_0 = const()[name = tensor("obj_71_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_71_dilations_0 = const()[name = tensor("obj_71_dilations_0"), val = tensor([1, 1])]; tensor obj_71_groups_0 = const()[name = tensor("obj_71_groups_0"), val = tensor(1)]; tensor layers_17_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_17_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(444416896)))]; tensor layers_17_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_17_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(446514112)))]; tensor obj_71_cast_fp16 = conv(bias = layers_17_self_attn_o_proj_bias_to_fp16, dilations = obj_71_dilations_0, groups = obj_71_groups_0, pad = obj_71_pad_0, pad_type = obj_71_pad_type_0, strides = obj_71_strides_0, weight = layers_17_self_attn_o_proj_weight_to_fp16, x = input_137_cast_fp16)[name = tensor("obj_71_cast_fp16")]; tensor inputs_71_cast_fp16 = add(x = inputs_69_cast_fp16, y = obj_71_cast_fp16)[name = tensor("inputs_71_cast_fp16")]; tensor out_71_axes_0 = const()[name = tensor("out_71_axes_0"), val = tensor([1])]; tensor var_2289_to_fp16 = const()[name = tensor("op_2289_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_71_cast_fp16 = layer_norm(axes = out_71_axes_0, epsilon = var_2289_to_fp16, x = inputs_71_cast_fp16)[name = tensor("out_71_cast_fp16")]; tensor input_139_gamma_0_to_fp16 = const()[name = tensor("input_139_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(446516224)))]; tensor input_139_beta_0_to_fp16 = const()[name = tensor("input_139_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(446518336)))]; tensor input_139_epsilon_0_to_fp16 = const()[name = tensor("input_139_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_139_cast_fp16 = batch_norm(beta = input_139_beta_0_to_fp16, epsilon = input_139_epsilon_0_to_fp16, gamma = input_139_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_71_cast_fp16)[name = tensor("input_139_cast_fp16")]; tensor input_141_pad_type_0 = const()[name = tensor("input_141_pad_type_0"), val = tensor("valid")]; tensor input_141_strides_0 = const()[name = tensor("input_141_strides_0"), val = tensor([1, 1])]; tensor input_141_pad_0 = const()[name = tensor("input_141_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_141_dilations_0 = const()[name = tensor("input_141_dilations_0"), val = tensor([1, 1])]; tensor input_141_groups_0 = const()[name = tensor("input_141_groups_0"), val = tensor(1)]; tensor layers_17_fc1_weight_to_fp16 = const()[name = tensor("layers_17_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(446520448)))]; tensor layers_17_fc1_bias_to_fp16 = const()[name = tensor("layers_17_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(454909120)))]; tensor input_141_cast_fp16 = conv(bias = layers_17_fc1_bias_to_fp16, dilations = input_141_dilations_0, groups = input_141_groups_0, pad = input_141_pad_0, pad_type = input_141_pad_type_0, strides = input_141_strides_0, weight = layers_17_fc1_weight_to_fp16, x = input_139_cast_fp16)[name = tensor("input_141_cast_fp16")]; tensor input_143_mode_0 = const()[name = tensor("input_143_mode_0"), val = tensor("EXACT")]; tensor input_143_cast_fp16 = gelu(mode = input_143_mode_0, x = input_141_cast_fp16)[name = tensor("input_143_cast_fp16")]; tensor hidden_states_39_pad_type_0 = const()[name = tensor("hidden_states_39_pad_type_0"), val = tensor("valid")]; tensor hidden_states_39_strides_0 = const()[name = tensor("hidden_states_39_strides_0"), val = tensor([1, 1])]; tensor hidden_states_39_pad_0 = const()[name = tensor("hidden_states_39_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_39_dilations_0 = const()[name = tensor("hidden_states_39_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_39_groups_0 = const()[name = tensor("hidden_states_39_groups_0"), val = tensor(1)]; tensor layers_17_fc2_weight_to_fp16 = const()[name = tensor("layers_17_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(454917376)))]; tensor layers_17_fc2_bias_to_fp16 = const()[name = tensor("layers_17_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(463306048)))]; tensor hidden_states_39_cast_fp16 = conv(bias = layers_17_fc2_bias_to_fp16, dilations = hidden_states_39_dilations_0, groups = hidden_states_39_groups_0, pad = hidden_states_39_pad_0, pad_type = hidden_states_39_pad_type_0, strides = hidden_states_39_strides_0, weight = layers_17_fc2_weight_to_fp16, x = input_143_cast_fp16)[name = tensor("hidden_states_39_cast_fp16")]; tensor inputs_73_cast_fp16 = add(x = inputs_71_cast_fp16, y = hidden_states_39_cast_fp16)[name = tensor("inputs_73_cast_fp16")]; tensor var_2318 = const()[name = tensor("op_2318"), val = tensor(3)]; tensor out_73_axes_0 = const()[name = tensor("out_73_axes_0"), val = tensor([1])]; tensor var_2340_to_fp16 = const()[name = tensor("op_2340_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_73_cast_fp16 = layer_norm(axes = out_73_axes_0, epsilon = var_2340_to_fp16, x = inputs_73_cast_fp16)[name = tensor("out_73_cast_fp16")]; tensor obj_73_gamma_0_to_fp16 = const()[name = tensor("obj_73_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(463308160)))]; tensor obj_73_beta_0_to_fp16 = const()[name = tensor("obj_73_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(463310272)))]; tensor obj_73_epsilon_0_to_fp16 = const()[name = tensor("obj_73_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_73_cast_fp16 = batch_norm(beta = obj_73_beta_0_to_fp16, epsilon = obj_73_epsilon_0_to_fp16, gamma = obj_73_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_73_cast_fp16)[name = tensor("obj_73_cast_fp16")]; tensor query_37_pad_type_0 = const()[name = tensor("query_37_pad_type_0"), val = tensor("valid")]; tensor query_37_strides_0 = const()[name = tensor("query_37_strides_0"), val = tensor([1, 1])]; tensor query_37_pad_0 = const()[name = tensor("query_37_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_37_dilations_0 = const()[name = tensor("query_37_dilations_0"), val = tensor([1, 1])]; tensor query_37_groups_0 = const()[name = tensor("query_37_groups_0"), val = tensor(1)]; tensor layers_18_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_18_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(463312384)))]; tensor layers_18_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_18_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(465409600)))]; tensor query_37_cast_fp16 = conv(bias = layers_18_self_attn_q_proj_bias_to_fp16, dilations = query_37_dilations_0, groups = query_37_groups_0, pad = query_37_pad_0, pad_type = query_37_pad_type_0, strides = query_37_strides_0, weight = layers_18_self_attn_q_proj_weight_to_fp16, x = obj_73_cast_fp16)[name = tensor("query_37_cast_fp16")]; tensor key_37_pad_type_0 = const()[name = tensor("key_37_pad_type_0"), val = tensor("valid")]; tensor key_37_strides_0 = const()[name = tensor("key_37_strides_0"), val = tensor([1, 1])]; tensor key_37_pad_0 = const()[name = tensor("key_37_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_37_dilations_0 = const()[name = tensor("key_37_dilations_0"), val = tensor([1, 1])]; tensor key_37_groups_0 = const()[name = tensor("key_37_groups_0"), val = tensor(1)]; tensor layers_18_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_18_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(465411712)))]; tensor key_37_cast_fp16 = conv(dilations = key_37_dilations_0, groups = key_37_groups_0, pad = key_37_pad_0, pad_type = key_37_pad_type_0, strides = key_37_strides_0, weight = layers_18_self_attn_k_proj_weight_to_fp16, x = obj_73_cast_fp16)[name = tensor("key_37_cast_fp16")]; tensor value_37_pad_type_0 = const()[name = tensor("value_37_pad_type_0"), val = tensor("valid")]; tensor value_37_strides_0 = const()[name = tensor("value_37_strides_0"), val = tensor([1, 1])]; tensor value_37_pad_0 = const()[name = tensor("value_37_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_37_dilations_0 = const()[name = tensor("value_37_dilations_0"), val = tensor([1, 1])]; tensor value_37_groups_0 = const()[name = tensor("value_37_groups_0"), val = tensor(1)]; tensor layers_18_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_18_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(467508928)))]; tensor layers_18_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_18_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(469606144)))]; tensor value_37_cast_fp16 = conv(bias = layers_18_self_attn_v_proj_bias_to_fp16, dilations = value_37_dilations_0, groups = value_37_groups_0, pad = value_37_pad_0, pad_type = value_37_pad_type_0, strides = value_37_strides_0, weight = layers_18_self_attn_v_proj_weight_to_fp16, x = obj_73_cast_fp16)[name = tensor("value_37_cast_fp16")]; tensor var_2376 = const()[name = tensor("op_2376"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_37_cast_fp16 = reshape(shape = var_2376, x = query_37_cast_fp16)[name = tensor("mh_q_37_cast_fp16")]; tensor var_2378_to_fp16 = const()[name = tensor("op_2378_to_fp16"), val = tensor(0x1p-3)]; tensor var_2379_cast_fp16 = mul(x = mh_q_37_cast_fp16, y = var_2378_to_fp16)[name = tensor("op_2379_cast_fp16")]; tensor var_2382 = const()[name = tensor("op_2382"), val = tensor([1, 16, 64, 1500])]; tensor var_2383_cast_fp16 = reshape(shape = var_2382, x = key_37_cast_fp16)[name = tensor("op_2383_cast_fp16")]; tensor mh_w_37_transpose_x_0 = const()[name = tensor("mh_w_37_transpose_x_0"), val = tensor(true)]; tensor mh_w_37_transpose_y_0 = const()[name = tensor("mh_w_37_transpose_y_0"), val = tensor(false)]; tensor mh_w_37_cast_fp16 = matmul(transpose_x = mh_w_37_transpose_x_0, transpose_y = mh_w_37_transpose_y_0, x = var_2379_cast_fp16, y = var_2383_cast_fp16)[name = tensor("mh_w_37_cast_fp16")]; tensor var_2386_cast_fp16 = softmax(axis = var_2318, x = mh_w_37_cast_fp16)[name = tensor("op_2386_cast_fp16")]; tensor var_2387 = const()[name = tensor("op_2387"), val = tensor([1, 16, 64, 1500])]; tensor var_2388_cast_fp16 = reshape(shape = var_2387, x = value_37_cast_fp16)[name = tensor("op_2388_cast_fp16")]; tensor attn_37_transpose_x_0 = const()[name = tensor("attn_37_transpose_x_0"), val = tensor(false)]; tensor attn_37_transpose_y_0 = const()[name = tensor("attn_37_transpose_y_0"), val = tensor(true)]; tensor attn_37_cast_fp16 = matmul(transpose_x = attn_37_transpose_x_0, transpose_y = attn_37_transpose_y_0, x = var_2388_cast_fp16, y = var_2386_cast_fp16)[name = tensor("attn_37_cast_fp16")]; tensor var_2391 = const()[name = tensor("op_2391"), val = tensor([1, 1024, 1, 1500])]; tensor input_145_cast_fp16 = reshape(shape = var_2391, x = attn_37_cast_fp16)[name = tensor("input_145_cast_fp16")]; tensor obj_75_pad_type_0 = const()[name = tensor("obj_75_pad_type_0"), val = tensor("valid")]; tensor obj_75_strides_0 = const()[name = tensor("obj_75_strides_0"), val = tensor([1, 1])]; tensor obj_75_pad_0 = const()[name = tensor("obj_75_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_75_dilations_0 = const()[name = tensor("obj_75_dilations_0"), val = tensor([1, 1])]; tensor obj_75_groups_0 = const()[name = tensor("obj_75_groups_0"), val = tensor(1)]; tensor layers_18_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_18_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(469608256)))]; tensor layers_18_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_18_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(471705472)))]; tensor obj_75_cast_fp16 = conv(bias = layers_18_self_attn_o_proj_bias_to_fp16, dilations = obj_75_dilations_0, groups = obj_75_groups_0, pad = obj_75_pad_0, pad_type = obj_75_pad_type_0, strides = obj_75_strides_0, weight = layers_18_self_attn_o_proj_weight_to_fp16, x = input_145_cast_fp16)[name = tensor("obj_75_cast_fp16")]; tensor inputs_75_cast_fp16 = add(x = inputs_73_cast_fp16, y = obj_75_cast_fp16)[name = tensor("inputs_75_cast_fp16")]; tensor out_75_axes_0 = const()[name = tensor("out_75_axes_0"), val = tensor([1])]; tensor var_2409_to_fp16 = const()[name = tensor("op_2409_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_75_cast_fp16 = layer_norm(axes = out_75_axes_0, epsilon = var_2409_to_fp16, x = inputs_75_cast_fp16)[name = tensor("out_75_cast_fp16")]; tensor input_147_gamma_0_to_fp16 = const()[name = tensor("input_147_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(471707584)))]; tensor input_147_beta_0_to_fp16 = const()[name = tensor("input_147_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(471709696)))]; tensor input_147_epsilon_0_to_fp16 = const()[name = tensor("input_147_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_147_cast_fp16 = batch_norm(beta = input_147_beta_0_to_fp16, epsilon = input_147_epsilon_0_to_fp16, gamma = input_147_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_75_cast_fp16)[name = tensor("input_147_cast_fp16")]; tensor input_149_pad_type_0 = const()[name = tensor("input_149_pad_type_0"), val = tensor("valid")]; tensor input_149_strides_0 = const()[name = tensor("input_149_strides_0"), val = tensor([1, 1])]; tensor input_149_pad_0 = const()[name = tensor("input_149_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_149_dilations_0 = const()[name = tensor("input_149_dilations_0"), val = tensor([1, 1])]; tensor input_149_groups_0 = const()[name = tensor("input_149_groups_0"), val = tensor(1)]; tensor layers_18_fc1_weight_to_fp16 = const()[name = tensor("layers_18_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(471711808)))]; tensor layers_18_fc1_bias_to_fp16 = const()[name = tensor("layers_18_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(480100480)))]; tensor input_149_cast_fp16 = conv(bias = layers_18_fc1_bias_to_fp16, dilations = input_149_dilations_0, groups = input_149_groups_0, pad = input_149_pad_0, pad_type = input_149_pad_type_0, strides = input_149_strides_0, weight = layers_18_fc1_weight_to_fp16, x = input_147_cast_fp16)[name = tensor("input_149_cast_fp16")]; tensor input_151_mode_0 = const()[name = tensor("input_151_mode_0"), val = tensor("EXACT")]; tensor input_151_cast_fp16 = gelu(mode = input_151_mode_0, x = input_149_cast_fp16)[name = tensor("input_151_cast_fp16")]; tensor hidden_states_41_pad_type_0 = const()[name = tensor("hidden_states_41_pad_type_0"), val = tensor("valid")]; tensor hidden_states_41_strides_0 = const()[name = tensor("hidden_states_41_strides_0"), val = tensor([1, 1])]; tensor hidden_states_41_pad_0 = const()[name = tensor("hidden_states_41_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_41_dilations_0 = const()[name = tensor("hidden_states_41_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_41_groups_0 = const()[name = tensor("hidden_states_41_groups_0"), val = tensor(1)]; tensor layers_18_fc2_weight_to_fp16 = const()[name = tensor("layers_18_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(480108736)))]; tensor layers_18_fc2_bias_to_fp16 = const()[name = tensor("layers_18_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(488497408)))]; tensor hidden_states_41_cast_fp16 = conv(bias = layers_18_fc2_bias_to_fp16, dilations = hidden_states_41_dilations_0, groups = hidden_states_41_groups_0, pad = hidden_states_41_pad_0, pad_type = hidden_states_41_pad_type_0, strides = hidden_states_41_strides_0, weight = layers_18_fc2_weight_to_fp16, x = input_151_cast_fp16)[name = tensor("hidden_states_41_cast_fp16")]; tensor inputs_77_cast_fp16 = add(x = inputs_75_cast_fp16, y = hidden_states_41_cast_fp16)[name = tensor("inputs_77_cast_fp16")]; tensor var_2438 = const()[name = tensor("op_2438"), val = tensor(3)]; tensor out_77_axes_0 = const()[name = tensor("out_77_axes_0"), val = tensor([1])]; tensor var_2460_to_fp16 = const()[name = tensor("op_2460_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_77_cast_fp16 = layer_norm(axes = out_77_axes_0, epsilon = var_2460_to_fp16, x = inputs_77_cast_fp16)[name = tensor("out_77_cast_fp16")]; tensor obj_77_gamma_0_to_fp16 = const()[name = tensor("obj_77_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(488499520)))]; tensor obj_77_beta_0_to_fp16 = const()[name = tensor("obj_77_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(488501632)))]; tensor obj_77_epsilon_0_to_fp16 = const()[name = tensor("obj_77_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_77_cast_fp16 = batch_norm(beta = obj_77_beta_0_to_fp16, epsilon = obj_77_epsilon_0_to_fp16, gamma = obj_77_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_77_cast_fp16)[name = tensor("obj_77_cast_fp16")]; tensor query_39_pad_type_0 = const()[name = tensor("query_39_pad_type_0"), val = tensor("valid")]; tensor query_39_strides_0 = const()[name = tensor("query_39_strides_0"), val = tensor([1, 1])]; tensor query_39_pad_0 = const()[name = tensor("query_39_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_39_dilations_0 = const()[name = tensor("query_39_dilations_0"), val = tensor([1, 1])]; tensor query_39_groups_0 = const()[name = tensor("query_39_groups_0"), val = tensor(1)]; tensor layers_19_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_19_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(488503744)))]; tensor layers_19_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_19_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(490600960)))]; tensor query_39_cast_fp16 = conv(bias = layers_19_self_attn_q_proj_bias_to_fp16, dilations = query_39_dilations_0, groups = query_39_groups_0, pad = query_39_pad_0, pad_type = query_39_pad_type_0, strides = query_39_strides_0, weight = layers_19_self_attn_q_proj_weight_to_fp16, x = obj_77_cast_fp16)[name = tensor("query_39_cast_fp16")]; tensor key_39_pad_type_0 = const()[name = tensor("key_39_pad_type_0"), val = tensor("valid")]; tensor key_39_strides_0 = const()[name = tensor("key_39_strides_0"), val = tensor([1, 1])]; tensor key_39_pad_0 = const()[name = tensor("key_39_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_39_dilations_0 = const()[name = tensor("key_39_dilations_0"), val = tensor([1, 1])]; tensor key_39_groups_0 = const()[name = tensor("key_39_groups_0"), val = tensor(1)]; tensor layers_19_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_19_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(490603072)))]; tensor key_39_cast_fp16 = conv(dilations = key_39_dilations_0, groups = key_39_groups_0, pad = key_39_pad_0, pad_type = key_39_pad_type_0, strides = key_39_strides_0, weight = layers_19_self_attn_k_proj_weight_to_fp16, x = obj_77_cast_fp16)[name = tensor("key_39_cast_fp16")]; tensor value_39_pad_type_0 = const()[name = tensor("value_39_pad_type_0"), val = tensor("valid")]; tensor value_39_strides_0 = const()[name = tensor("value_39_strides_0"), val = tensor([1, 1])]; tensor value_39_pad_0 = const()[name = tensor("value_39_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_39_dilations_0 = const()[name = tensor("value_39_dilations_0"), val = tensor([1, 1])]; tensor value_39_groups_0 = const()[name = tensor("value_39_groups_0"), val = tensor(1)]; tensor layers_19_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_19_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(492700288)))]; tensor layers_19_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_19_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(494797504)))]; tensor value_39_cast_fp16 = conv(bias = layers_19_self_attn_v_proj_bias_to_fp16, dilations = value_39_dilations_0, groups = value_39_groups_0, pad = value_39_pad_0, pad_type = value_39_pad_type_0, strides = value_39_strides_0, weight = layers_19_self_attn_v_proj_weight_to_fp16, x = obj_77_cast_fp16)[name = tensor("value_39_cast_fp16")]; tensor var_2496 = const()[name = tensor("op_2496"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_39_cast_fp16 = reshape(shape = var_2496, x = query_39_cast_fp16)[name = tensor("mh_q_39_cast_fp16")]; tensor var_2498_to_fp16 = const()[name = tensor("op_2498_to_fp16"), val = tensor(0x1p-3)]; tensor var_2499_cast_fp16 = mul(x = mh_q_39_cast_fp16, y = var_2498_to_fp16)[name = tensor("op_2499_cast_fp16")]; tensor var_2502 = const()[name = tensor("op_2502"), val = tensor([1, 16, 64, 1500])]; tensor var_2503_cast_fp16 = reshape(shape = var_2502, x = key_39_cast_fp16)[name = tensor("op_2503_cast_fp16")]; tensor mh_w_39_transpose_x_0 = const()[name = tensor("mh_w_39_transpose_x_0"), val = tensor(true)]; tensor mh_w_39_transpose_y_0 = const()[name = tensor("mh_w_39_transpose_y_0"), val = tensor(false)]; tensor mh_w_39_cast_fp16 = matmul(transpose_x = mh_w_39_transpose_x_0, transpose_y = mh_w_39_transpose_y_0, x = var_2499_cast_fp16, y = var_2503_cast_fp16)[name = tensor("mh_w_39_cast_fp16")]; tensor var_2506_cast_fp16 = softmax(axis = var_2438, x = mh_w_39_cast_fp16)[name = tensor("op_2506_cast_fp16")]; tensor var_2507 = const()[name = tensor("op_2507"), val = tensor([1, 16, 64, 1500])]; tensor var_2508_cast_fp16 = reshape(shape = var_2507, x = value_39_cast_fp16)[name = tensor("op_2508_cast_fp16")]; tensor attn_39_transpose_x_0 = const()[name = tensor("attn_39_transpose_x_0"), val = tensor(false)]; tensor attn_39_transpose_y_0 = const()[name = tensor("attn_39_transpose_y_0"), val = tensor(true)]; tensor attn_39_cast_fp16 = matmul(transpose_x = attn_39_transpose_x_0, transpose_y = attn_39_transpose_y_0, x = var_2508_cast_fp16, y = var_2506_cast_fp16)[name = tensor("attn_39_cast_fp16")]; tensor var_2511 = const()[name = tensor("op_2511"), val = tensor([1, 1024, 1, 1500])]; tensor input_153_cast_fp16 = reshape(shape = var_2511, x = attn_39_cast_fp16)[name = tensor("input_153_cast_fp16")]; tensor obj_79_pad_type_0 = const()[name = tensor("obj_79_pad_type_0"), val = tensor("valid")]; tensor obj_79_strides_0 = const()[name = tensor("obj_79_strides_0"), val = tensor([1, 1])]; tensor obj_79_pad_0 = const()[name = tensor("obj_79_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_79_dilations_0 = const()[name = tensor("obj_79_dilations_0"), val = tensor([1, 1])]; tensor obj_79_groups_0 = const()[name = tensor("obj_79_groups_0"), val = tensor(1)]; tensor layers_19_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_19_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(494799616)))]; tensor layers_19_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_19_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(496896832)))]; tensor obj_79_cast_fp16 = conv(bias = layers_19_self_attn_o_proj_bias_to_fp16, dilations = obj_79_dilations_0, groups = obj_79_groups_0, pad = obj_79_pad_0, pad_type = obj_79_pad_type_0, strides = obj_79_strides_0, weight = layers_19_self_attn_o_proj_weight_to_fp16, x = input_153_cast_fp16)[name = tensor("obj_79_cast_fp16")]; tensor inputs_79_cast_fp16 = add(x = inputs_77_cast_fp16, y = obj_79_cast_fp16)[name = tensor("inputs_79_cast_fp16")]; tensor out_79_axes_0 = const()[name = tensor("out_79_axes_0"), val = tensor([1])]; tensor var_2529_to_fp16 = const()[name = tensor("op_2529_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_79_cast_fp16 = layer_norm(axes = out_79_axes_0, epsilon = var_2529_to_fp16, x = inputs_79_cast_fp16)[name = tensor("out_79_cast_fp16")]; tensor input_155_gamma_0_to_fp16 = const()[name = tensor("input_155_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(496898944)))]; tensor input_155_beta_0_to_fp16 = const()[name = tensor("input_155_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(496901056)))]; tensor input_155_epsilon_0_to_fp16 = const()[name = tensor("input_155_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_155_cast_fp16 = batch_norm(beta = input_155_beta_0_to_fp16, epsilon = input_155_epsilon_0_to_fp16, gamma = input_155_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_79_cast_fp16)[name = tensor("input_155_cast_fp16")]; tensor input_157_pad_type_0 = const()[name = tensor("input_157_pad_type_0"), val = tensor("valid")]; tensor input_157_strides_0 = const()[name = tensor("input_157_strides_0"), val = tensor([1, 1])]; tensor input_157_pad_0 = const()[name = tensor("input_157_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_157_dilations_0 = const()[name = tensor("input_157_dilations_0"), val = tensor([1, 1])]; tensor input_157_groups_0 = const()[name = tensor("input_157_groups_0"), val = tensor(1)]; tensor layers_19_fc1_weight_to_fp16 = const()[name = tensor("layers_19_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(496903168)))]; tensor layers_19_fc1_bias_to_fp16 = const()[name = tensor("layers_19_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(505291840)))]; tensor input_157_cast_fp16 = conv(bias = layers_19_fc1_bias_to_fp16, dilations = input_157_dilations_0, groups = input_157_groups_0, pad = input_157_pad_0, pad_type = input_157_pad_type_0, strides = input_157_strides_0, weight = layers_19_fc1_weight_to_fp16, x = input_155_cast_fp16)[name = tensor("input_157_cast_fp16")]; tensor input_159_mode_0 = const()[name = tensor("input_159_mode_0"), val = tensor("EXACT")]; tensor input_159_cast_fp16 = gelu(mode = input_159_mode_0, x = input_157_cast_fp16)[name = tensor("input_159_cast_fp16")]; tensor hidden_states_43_pad_type_0 = const()[name = tensor("hidden_states_43_pad_type_0"), val = tensor("valid")]; tensor hidden_states_43_strides_0 = const()[name = tensor("hidden_states_43_strides_0"), val = tensor([1, 1])]; tensor hidden_states_43_pad_0 = const()[name = tensor("hidden_states_43_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_43_dilations_0 = const()[name = tensor("hidden_states_43_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_43_groups_0 = const()[name = tensor("hidden_states_43_groups_0"), val = tensor(1)]; tensor layers_19_fc2_weight_to_fp16 = const()[name = tensor("layers_19_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(505300096)))]; tensor layers_19_fc2_bias_to_fp16 = const()[name = tensor("layers_19_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(513688768)))]; tensor hidden_states_43_cast_fp16 = conv(bias = layers_19_fc2_bias_to_fp16, dilations = hidden_states_43_dilations_0, groups = hidden_states_43_groups_0, pad = hidden_states_43_pad_0, pad_type = hidden_states_43_pad_type_0, strides = hidden_states_43_strides_0, weight = layers_19_fc2_weight_to_fp16, x = input_159_cast_fp16)[name = tensor("hidden_states_43_cast_fp16")]; tensor inputs_81_cast_fp16 = add(x = inputs_79_cast_fp16, y = hidden_states_43_cast_fp16)[name = tensor("inputs_81_cast_fp16")]; tensor var_2558 = const()[name = tensor("op_2558"), val = tensor(3)]; tensor out_81_axes_0 = const()[name = tensor("out_81_axes_0"), val = tensor([1])]; tensor var_2580_to_fp16 = const()[name = tensor("op_2580_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_81_cast_fp16 = layer_norm(axes = out_81_axes_0, epsilon = var_2580_to_fp16, x = inputs_81_cast_fp16)[name = tensor("out_81_cast_fp16")]; tensor obj_81_gamma_0_to_fp16 = const()[name = tensor("obj_81_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(513690880)))]; tensor obj_81_beta_0_to_fp16 = const()[name = tensor("obj_81_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(513692992)))]; tensor obj_81_epsilon_0_to_fp16 = const()[name = tensor("obj_81_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_81_cast_fp16 = batch_norm(beta = obj_81_beta_0_to_fp16, epsilon = obj_81_epsilon_0_to_fp16, gamma = obj_81_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_81_cast_fp16)[name = tensor("obj_81_cast_fp16")]; tensor query_41_pad_type_0 = const()[name = tensor("query_41_pad_type_0"), val = tensor("valid")]; tensor query_41_strides_0 = const()[name = tensor("query_41_strides_0"), val = tensor([1, 1])]; tensor query_41_pad_0 = const()[name = tensor("query_41_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_41_dilations_0 = const()[name = tensor("query_41_dilations_0"), val = tensor([1, 1])]; tensor query_41_groups_0 = const()[name = tensor("query_41_groups_0"), val = tensor(1)]; tensor layers_20_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_20_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(513695104)))]; tensor layers_20_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_20_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(515792320)))]; tensor query_41_cast_fp16 = conv(bias = layers_20_self_attn_q_proj_bias_to_fp16, dilations = query_41_dilations_0, groups = query_41_groups_0, pad = query_41_pad_0, pad_type = query_41_pad_type_0, strides = query_41_strides_0, weight = layers_20_self_attn_q_proj_weight_to_fp16, x = obj_81_cast_fp16)[name = tensor("query_41_cast_fp16")]; tensor key_41_pad_type_0 = const()[name = tensor("key_41_pad_type_0"), val = tensor("valid")]; tensor key_41_strides_0 = const()[name = tensor("key_41_strides_0"), val = tensor([1, 1])]; tensor key_41_pad_0 = const()[name = tensor("key_41_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_41_dilations_0 = const()[name = tensor("key_41_dilations_0"), val = tensor([1, 1])]; tensor key_41_groups_0 = const()[name = tensor("key_41_groups_0"), val = tensor(1)]; tensor layers_20_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_20_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(515794432)))]; tensor key_41_cast_fp16 = conv(dilations = key_41_dilations_0, groups = key_41_groups_0, pad = key_41_pad_0, pad_type = key_41_pad_type_0, strides = key_41_strides_0, weight = layers_20_self_attn_k_proj_weight_to_fp16, x = obj_81_cast_fp16)[name = tensor("key_41_cast_fp16")]; tensor value_41_pad_type_0 = const()[name = tensor("value_41_pad_type_0"), val = tensor("valid")]; tensor value_41_strides_0 = const()[name = tensor("value_41_strides_0"), val = tensor([1, 1])]; tensor value_41_pad_0 = const()[name = tensor("value_41_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_41_dilations_0 = const()[name = tensor("value_41_dilations_0"), val = tensor([1, 1])]; tensor value_41_groups_0 = const()[name = tensor("value_41_groups_0"), val = tensor(1)]; tensor layers_20_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_20_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(517891648)))]; tensor layers_20_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_20_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(519988864)))]; tensor value_41_cast_fp16 = conv(bias = layers_20_self_attn_v_proj_bias_to_fp16, dilations = value_41_dilations_0, groups = value_41_groups_0, pad = value_41_pad_0, pad_type = value_41_pad_type_0, strides = value_41_strides_0, weight = layers_20_self_attn_v_proj_weight_to_fp16, x = obj_81_cast_fp16)[name = tensor("value_41_cast_fp16")]; tensor var_2616 = const()[name = tensor("op_2616"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_41_cast_fp16 = reshape(shape = var_2616, x = query_41_cast_fp16)[name = tensor("mh_q_41_cast_fp16")]; tensor var_2618_to_fp16 = const()[name = tensor("op_2618_to_fp16"), val = tensor(0x1p-3)]; tensor var_2619_cast_fp16 = mul(x = mh_q_41_cast_fp16, y = var_2618_to_fp16)[name = tensor("op_2619_cast_fp16")]; tensor var_2622 = const()[name = tensor("op_2622"), val = tensor([1, 16, 64, 1500])]; tensor var_2623_cast_fp16 = reshape(shape = var_2622, x = key_41_cast_fp16)[name = tensor("op_2623_cast_fp16")]; tensor mh_w_41_transpose_x_0 = const()[name = tensor("mh_w_41_transpose_x_0"), val = tensor(true)]; tensor mh_w_41_transpose_y_0 = const()[name = tensor("mh_w_41_transpose_y_0"), val = tensor(false)]; tensor mh_w_41_cast_fp16 = matmul(transpose_x = mh_w_41_transpose_x_0, transpose_y = mh_w_41_transpose_y_0, x = var_2619_cast_fp16, y = var_2623_cast_fp16)[name = tensor("mh_w_41_cast_fp16")]; tensor var_2626_cast_fp16 = softmax(axis = var_2558, x = mh_w_41_cast_fp16)[name = tensor("op_2626_cast_fp16")]; tensor var_2627 = const()[name = tensor("op_2627"), val = tensor([1, 16, 64, 1500])]; tensor var_2628_cast_fp16 = reshape(shape = var_2627, x = value_41_cast_fp16)[name = tensor("op_2628_cast_fp16")]; tensor attn_41_transpose_x_0 = const()[name = tensor("attn_41_transpose_x_0"), val = tensor(false)]; tensor attn_41_transpose_y_0 = const()[name = tensor("attn_41_transpose_y_0"), val = tensor(true)]; tensor attn_41_cast_fp16 = matmul(transpose_x = attn_41_transpose_x_0, transpose_y = attn_41_transpose_y_0, x = var_2628_cast_fp16, y = var_2626_cast_fp16)[name = tensor("attn_41_cast_fp16")]; tensor var_2631 = const()[name = tensor("op_2631"), val = tensor([1, 1024, 1, 1500])]; tensor input_161_cast_fp16 = reshape(shape = var_2631, x = attn_41_cast_fp16)[name = tensor("input_161_cast_fp16")]; tensor obj_83_pad_type_0 = const()[name = tensor("obj_83_pad_type_0"), val = tensor("valid")]; tensor obj_83_strides_0 = const()[name = tensor("obj_83_strides_0"), val = tensor([1, 1])]; tensor obj_83_pad_0 = const()[name = tensor("obj_83_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_83_dilations_0 = const()[name = tensor("obj_83_dilations_0"), val = tensor([1, 1])]; tensor obj_83_groups_0 = const()[name = tensor("obj_83_groups_0"), val = tensor(1)]; tensor layers_20_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_20_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(519990976)))]; tensor layers_20_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_20_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(522088192)))]; tensor obj_83_cast_fp16 = conv(bias = layers_20_self_attn_o_proj_bias_to_fp16, dilations = obj_83_dilations_0, groups = obj_83_groups_0, pad = obj_83_pad_0, pad_type = obj_83_pad_type_0, strides = obj_83_strides_0, weight = layers_20_self_attn_o_proj_weight_to_fp16, x = input_161_cast_fp16)[name = tensor("obj_83_cast_fp16")]; tensor inputs_83_cast_fp16 = add(x = inputs_81_cast_fp16, y = obj_83_cast_fp16)[name = tensor("inputs_83_cast_fp16")]; tensor out_83_axes_0 = const()[name = tensor("out_83_axes_0"), val = tensor([1])]; tensor var_2649_to_fp16 = const()[name = tensor("op_2649_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_83_cast_fp16 = layer_norm(axes = out_83_axes_0, epsilon = var_2649_to_fp16, x = inputs_83_cast_fp16)[name = tensor("out_83_cast_fp16")]; tensor input_163_gamma_0_to_fp16 = const()[name = tensor("input_163_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(522090304)))]; tensor input_163_beta_0_to_fp16 = const()[name = tensor("input_163_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(522092416)))]; tensor input_163_epsilon_0_to_fp16 = const()[name = tensor("input_163_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_163_cast_fp16 = batch_norm(beta = input_163_beta_0_to_fp16, epsilon = input_163_epsilon_0_to_fp16, gamma = input_163_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_83_cast_fp16)[name = tensor("input_163_cast_fp16")]; tensor input_165_pad_type_0 = const()[name = tensor("input_165_pad_type_0"), val = tensor("valid")]; tensor input_165_strides_0 = const()[name = tensor("input_165_strides_0"), val = tensor([1, 1])]; tensor input_165_pad_0 = const()[name = tensor("input_165_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_165_dilations_0 = const()[name = tensor("input_165_dilations_0"), val = tensor([1, 1])]; tensor input_165_groups_0 = const()[name = tensor("input_165_groups_0"), val = tensor(1)]; tensor layers_20_fc1_weight_to_fp16 = const()[name = tensor("layers_20_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(522094528)))]; tensor layers_20_fc1_bias_to_fp16 = const()[name = tensor("layers_20_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(530483200)))]; tensor input_165_cast_fp16 = conv(bias = layers_20_fc1_bias_to_fp16, dilations = input_165_dilations_0, groups = input_165_groups_0, pad = input_165_pad_0, pad_type = input_165_pad_type_0, strides = input_165_strides_0, weight = layers_20_fc1_weight_to_fp16, x = input_163_cast_fp16)[name = tensor("input_165_cast_fp16")]; tensor input_167_mode_0 = const()[name = tensor("input_167_mode_0"), val = tensor("EXACT")]; tensor input_167_cast_fp16 = gelu(mode = input_167_mode_0, x = input_165_cast_fp16)[name = tensor("input_167_cast_fp16")]; tensor hidden_states_45_pad_type_0 = const()[name = tensor("hidden_states_45_pad_type_0"), val = tensor("valid")]; tensor hidden_states_45_strides_0 = const()[name = tensor("hidden_states_45_strides_0"), val = tensor([1, 1])]; tensor hidden_states_45_pad_0 = const()[name = tensor("hidden_states_45_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_45_dilations_0 = const()[name = tensor("hidden_states_45_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_45_groups_0 = const()[name = tensor("hidden_states_45_groups_0"), val = tensor(1)]; tensor layers_20_fc2_weight_to_fp16 = const()[name = tensor("layers_20_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(530491456)))]; tensor layers_20_fc2_bias_to_fp16 = const()[name = tensor("layers_20_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(538880128)))]; tensor hidden_states_45_cast_fp16 = conv(bias = layers_20_fc2_bias_to_fp16, dilations = hidden_states_45_dilations_0, groups = hidden_states_45_groups_0, pad = hidden_states_45_pad_0, pad_type = hidden_states_45_pad_type_0, strides = hidden_states_45_strides_0, weight = layers_20_fc2_weight_to_fp16, x = input_167_cast_fp16)[name = tensor("hidden_states_45_cast_fp16")]; tensor inputs_85_cast_fp16 = add(x = inputs_83_cast_fp16, y = hidden_states_45_cast_fp16)[name = tensor("inputs_85_cast_fp16")]; tensor var_2678 = const()[name = tensor("op_2678"), val = tensor(3)]; tensor out_85_axes_0 = const()[name = tensor("out_85_axes_0"), val = tensor([1])]; tensor var_2700_to_fp16 = const()[name = tensor("op_2700_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_85_cast_fp16 = layer_norm(axes = out_85_axes_0, epsilon = var_2700_to_fp16, x = inputs_85_cast_fp16)[name = tensor("out_85_cast_fp16")]; tensor obj_85_gamma_0_to_fp16 = const()[name = tensor("obj_85_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(538882240)))]; tensor obj_85_beta_0_to_fp16 = const()[name = tensor("obj_85_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(538884352)))]; tensor obj_85_epsilon_0_to_fp16 = const()[name = tensor("obj_85_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_85_cast_fp16 = batch_norm(beta = obj_85_beta_0_to_fp16, epsilon = obj_85_epsilon_0_to_fp16, gamma = obj_85_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_85_cast_fp16)[name = tensor("obj_85_cast_fp16")]; tensor query_43_pad_type_0 = const()[name = tensor("query_43_pad_type_0"), val = tensor("valid")]; tensor query_43_strides_0 = const()[name = tensor("query_43_strides_0"), val = tensor([1, 1])]; tensor query_43_pad_0 = const()[name = tensor("query_43_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_43_dilations_0 = const()[name = tensor("query_43_dilations_0"), val = tensor([1, 1])]; tensor query_43_groups_0 = const()[name = tensor("query_43_groups_0"), val = tensor(1)]; tensor layers_21_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_21_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(538886464)))]; tensor layers_21_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_21_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(540983680)))]; tensor query_43_cast_fp16 = conv(bias = layers_21_self_attn_q_proj_bias_to_fp16, dilations = query_43_dilations_0, groups = query_43_groups_0, pad = query_43_pad_0, pad_type = query_43_pad_type_0, strides = query_43_strides_0, weight = layers_21_self_attn_q_proj_weight_to_fp16, x = obj_85_cast_fp16)[name = tensor("query_43_cast_fp16")]; tensor key_43_pad_type_0 = const()[name = tensor("key_43_pad_type_0"), val = tensor("valid")]; tensor key_43_strides_0 = const()[name = tensor("key_43_strides_0"), val = tensor([1, 1])]; tensor key_43_pad_0 = const()[name = tensor("key_43_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_43_dilations_0 = const()[name = tensor("key_43_dilations_0"), val = tensor([1, 1])]; tensor key_43_groups_0 = const()[name = tensor("key_43_groups_0"), val = tensor(1)]; tensor layers_21_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_21_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(540985792)))]; tensor key_43_cast_fp16 = conv(dilations = key_43_dilations_0, groups = key_43_groups_0, pad = key_43_pad_0, pad_type = key_43_pad_type_0, strides = key_43_strides_0, weight = layers_21_self_attn_k_proj_weight_to_fp16, x = obj_85_cast_fp16)[name = tensor("key_43_cast_fp16")]; tensor value_43_pad_type_0 = const()[name = tensor("value_43_pad_type_0"), val = tensor("valid")]; tensor value_43_strides_0 = const()[name = tensor("value_43_strides_0"), val = tensor([1, 1])]; tensor value_43_pad_0 = const()[name = tensor("value_43_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_43_dilations_0 = const()[name = tensor("value_43_dilations_0"), val = tensor([1, 1])]; tensor value_43_groups_0 = const()[name = tensor("value_43_groups_0"), val = tensor(1)]; tensor layers_21_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_21_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(543083008)))]; tensor layers_21_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_21_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(545180224)))]; tensor value_43_cast_fp16 = conv(bias = layers_21_self_attn_v_proj_bias_to_fp16, dilations = value_43_dilations_0, groups = value_43_groups_0, pad = value_43_pad_0, pad_type = value_43_pad_type_0, strides = value_43_strides_0, weight = layers_21_self_attn_v_proj_weight_to_fp16, x = obj_85_cast_fp16)[name = tensor("value_43_cast_fp16")]; tensor var_2736 = const()[name = tensor("op_2736"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_43_cast_fp16 = reshape(shape = var_2736, x = query_43_cast_fp16)[name = tensor("mh_q_43_cast_fp16")]; tensor var_2738_to_fp16 = const()[name = tensor("op_2738_to_fp16"), val = tensor(0x1p-3)]; tensor var_2739_cast_fp16 = mul(x = mh_q_43_cast_fp16, y = var_2738_to_fp16)[name = tensor("op_2739_cast_fp16")]; tensor var_2742 = const()[name = tensor("op_2742"), val = tensor([1, 16, 64, 1500])]; tensor var_2743_cast_fp16 = reshape(shape = var_2742, x = key_43_cast_fp16)[name = tensor("op_2743_cast_fp16")]; tensor mh_w_43_transpose_x_0 = const()[name = tensor("mh_w_43_transpose_x_0"), val = tensor(true)]; tensor mh_w_43_transpose_y_0 = const()[name = tensor("mh_w_43_transpose_y_0"), val = tensor(false)]; tensor mh_w_43_cast_fp16 = matmul(transpose_x = mh_w_43_transpose_x_0, transpose_y = mh_w_43_transpose_y_0, x = var_2739_cast_fp16, y = var_2743_cast_fp16)[name = tensor("mh_w_43_cast_fp16")]; tensor var_2746_cast_fp16 = softmax(axis = var_2678, x = mh_w_43_cast_fp16)[name = tensor("op_2746_cast_fp16")]; tensor var_2747 = const()[name = tensor("op_2747"), val = tensor([1, 16, 64, 1500])]; tensor var_2748_cast_fp16 = reshape(shape = var_2747, x = value_43_cast_fp16)[name = tensor("op_2748_cast_fp16")]; tensor attn_43_transpose_x_0 = const()[name = tensor("attn_43_transpose_x_0"), val = tensor(false)]; tensor attn_43_transpose_y_0 = const()[name = tensor("attn_43_transpose_y_0"), val = tensor(true)]; tensor attn_43_cast_fp16 = matmul(transpose_x = attn_43_transpose_x_0, transpose_y = attn_43_transpose_y_0, x = var_2748_cast_fp16, y = var_2746_cast_fp16)[name = tensor("attn_43_cast_fp16")]; tensor var_2751 = const()[name = tensor("op_2751"), val = tensor([1, 1024, 1, 1500])]; tensor input_169_cast_fp16 = reshape(shape = var_2751, x = attn_43_cast_fp16)[name = tensor("input_169_cast_fp16")]; tensor obj_87_pad_type_0 = const()[name = tensor("obj_87_pad_type_0"), val = tensor("valid")]; tensor obj_87_strides_0 = const()[name = tensor("obj_87_strides_0"), val = tensor([1, 1])]; tensor obj_87_pad_0 = const()[name = tensor("obj_87_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_87_dilations_0 = const()[name = tensor("obj_87_dilations_0"), val = tensor([1, 1])]; tensor obj_87_groups_0 = const()[name = tensor("obj_87_groups_0"), val = tensor(1)]; tensor layers_21_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_21_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(545182336)))]; tensor layers_21_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_21_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(547279552)))]; tensor obj_87_cast_fp16 = conv(bias = layers_21_self_attn_o_proj_bias_to_fp16, dilations = obj_87_dilations_0, groups = obj_87_groups_0, pad = obj_87_pad_0, pad_type = obj_87_pad_type_0, strides = obj_87_strides_0, weight = layers_21_self_attn_o_proj_weight_to_fp16, x = input_169_cast_fp16)[name = tensor("obj_87_cast_fp16")]; tensor inputs_87_cast_fp16 = add(x = inputs_85_cast_fp16, y = obj_87_cast_fp16)[name = tensor("inputs_87_cast_fp16")]; tensor out_87_axes_0 = const()[name = tensor("out_87_axes_0"), val = tensor([1])]; tensor var_2769_to_fp16 = const()[name = tensor("op_2769_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_87_cast_fp16 = layer_norm(axes = out_87_axes_0, epsilon = var_2769_to_fp16, x = inputs_87_cast_fp16)[name = tensor("out_87_cast_fp16")]; tensor input_171_gamma_0_to_fp16 = const()[name = tensor("input_171_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(547281664)))]; tensor input_171_beta_0_to_fp16 = const()[name = tensor("input_171_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(547283776)))]; tensor input_171_epsilon_0_to_fp16 = const()[name = tensor("input_171_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_171_cast_fp16 = batch_norm(beta = input_171_beta_0_to_fp16, epsilon = input_171_epsilon_0_to_fp16, gamma = input_171_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_87_cast_fp16)[name = tensor("input_171_cast_fp16")]; tensor input_173_pad_type_0 = const()[name = tensor("input_173_pad_type_0"), val = tensor("valid")]; tensor input_173_strides_0 = const()[name = tensor("input_173_strides_0"), val = tensor([1, 1])]; tensor input_173_pad_0 = const()[name = tensor("input_173_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_173_dilations_0 = const()[name = tensor("input_173_dilations_0"), val = tensor([1, 1])]; tensor input_173_groups_0 = const()[name = tensor("input_173_groups_0"), val = tensor(1)]; tensor layers_21_fc1_weight_to_fp16 = const()[name = tensor("layers_21_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(547285888)))]; tensor layers_21_fc1_bias_to_fp16 = const()[name = tensor("layers_21_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(555674560)))]; tensor input_173_cast_fp16 = conv(bias = layers_21_fc1_bias_to_fp16, dilations = input_173_dilations_0, groups = input_173_groups_0, pad = input_173_pad_0, pad_type = input_173_pad_type_0, strides = input_173_strides_0, weight = layers_21_fc1_weight_to_fp16, x = input_171_cast_fp16)[name = tensor("input_173_cast_fp16")]; tensor input_175_mode_0 = const()[name = tensor("input_175_mode_0"), val = tensor("EXACT")]; tensor input_175_cast_fp16 = gelu(mode = input_175_mode_0, x = input_173_cast_fp16)[name = tensor("input_175_cast_fp16")]; tensor hidden_states_47_pad_type_0 = const()[name = tensor("hidden_states_47_pad_type_0"), val = tensor("valid")]; tensor hidden_states_47_strides_0 = const()[name = tensor("hidden_states_47_strides_0"), val = tensor([1, 1])]; tensor hidden_states_47_pad_0 = const()[name = tensor("hidden_states_47_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_47_dilations_0 = const()[name = tensor("hidden_states_47_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_47_groups_0 = const()[name = tensor("hidden_states_47_groups_0"), val = tensor(1)]; tensor layers_21_fc2_weight_to_fp16 = const()[name = tensor("layers_21_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(555682816)))]; tensor layers_21_fc2_bias_to_fp16 = const()[name = tensor("layers_21_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(564071488)))]; tensor hidden_states_47_cast_fp16 = conv(bias = layers_21_fc2_bias_to_fp16, dilations = hidden_states_47_dilations_0, groups = hidden_states_47_groups_0, pad = hidden_states_47_pad_0, pad_type = hidden_states_47_pad_type_0, strides = hidden_states_47_strides_0, weight = layers_21_fc2_weight_to_fp16, x = input_175_cast_fp16)[name = tensor("hidden_states_47_cast_fp16")]; tensor inputs_89_cast_fp16 = add(x = inputs_87_cast_fp16, y = hidden_states_47_cast_fp16)[name = tensor("inputs_89_cast_fp16")]; tensor var_2798 = const()[name = tensor("op_2798"), val = tensor(3)]; tensor out_89_axes_0 = const()[name = tensor("out_89_axes_0"), val = tensor([1])]; tensor var_2820_to_fp16 = const()[name = tensor("op_2820_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_89_cast_fp16 = layer_norm(axes = out_89_axes_0, epsilon = var_2820_to_fp16, x = inputs_89_cast_fp16)[name = tensor("out_89_cast_fp16")]; tensor obj_89_gamma_0_to_fp16 = const()[name = tensor("obj_89_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(564073600)))]; tensor obj_89_beta_0_to_fp16 = const()[name = tensor("obj_89_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(564075712)))]; tensor obj_89_epsilon_0_to_fp16 = const()[name = tensor("obj_89_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_89_cast_fp16 = batch_norm(beta = obj_89_beta_0_to_fp16, epsilon = obj_89_epsilon_0_to_fp16, gamma = obj_89_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_89_cast_fp16)[name = tensor("obj_89_cast_fp16")]; tensor query_45_pad_type_0 = const()[name = tensor("query_45_pad_type_0"), val = tensor("valid")]; tensor query_45_strides_0 = const()[name = tensor("query_45_strides_0"), val = tensor([1, 1])]; tensor query_45_pad_0 = const()[name = tensor("query_45_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_45_dilations_0 = const()[name = tensor("query_45_dilations_0"), val = tensor([1, 1])]; tensor query_45_groups_0 = const()[name = tensor("query_45_groups_0"), val = tensor(1)]; tensor layers_22_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_22_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(564077824)))]; tensor layers_22_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_22_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(566175040)))]; tensor query_45_cast_fp16 = conv(bias = layers_22_self_attn_q_proj_bias_to_fp16, dilations = query_45_dilations_0, groups = query_45_groups_0, pad = query_45_pad_0, pad_type = query_45_pad_type_0, strides = query_45_strides_0, weight = layers_22_self_attn_q_proj_weight_to_fp16, x = obj_89_cast_fp16)[name = tensor("query_45_cast_fp16")]; tensor key_45_pad_type_0 = const()[name = tensor("key_45_pad_type_0"), val = tensor("valid")]; tensor key_45_strides_0 = const()[name = tensor("key_45_strides_0"), val = tensor([1, 1])]; tensor key_45_pad_0 = const()[name = tensor("key_45_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_45_dilations_0 = const()[name = tensor("key_45_dilations_0"), val = tensor([1, 1])]; tensor key_45_groups_0 = const()[name = tensor("key_45_groups_0"), val = tensor(1)]; tensor layers_22_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_22_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(566177152)))]; tensor key_45_cast_fp16 = conv(dilations = key_45_dilations_0, groups = key_45_groups_0, pad = key_45_pad_0, pad_type = key_45_pad_type_0, strides = key_45_strides_0, weight = layers_22_self_attn_k_proj_weight_to_fp16, x = obj_89_cast_fp16)[name = tensor("key_45_cast_fp16")]; tensor value_45_pad_type_0 = const()[name = tensor("value_45_pad_type_0"), val = tensor("valid")]; tensor value_45_strides_0 = const()[name = tensor("value_45_strides_0"), val = tensor([1, 1])]; tensor value_45_pad_0 = const()[name = tensor("value_45_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_45_dilations_0 = const()[name = tensor("value_45_dilations_0"), val = tensor([1, 1])]; tensor value_45_groups_0 = const()[name = tensor("value_45_groups_0"), val = tensor(1)]; tensor layers_22_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_22_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(568274368)))]; tensor layers_22_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_22_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(570371584)))]; tensor value_45_cast_fp16 = conv(bias = layers_22_self_attn_v_proj_bias_to_fp16, dilations = value_45_dilations_0, groups = value_45_groups_0, pad = value_45_pad_0, pad_type = value_45_pad_type_0, strides = value_45_strides_0, weight = layers_22_self_attn_v_proj_weight_to_fp16, x = obj_89_cast_fp16)[name = tensor("value_45_cast_fp16")]; tensor var_2856 = const()[name = tensor("op_2856"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_45_cast_fp16 = reshape(shape = var_2856, x = query_45_cast_fp16)[name = tensor("mh_q_45_cast_fp16")]; tensor var_2858_to_fp16 = const()[name = tensor("op_2858_to_fp16"), val = tensor(0x1p-3)]; tensor var_2859_cast_fp16 = mul(x = mh_q_45_cast_fp16, y = var_2858_to_fp16)[name = tensor("op_2859_cast_fp16")]; tensor var_2862 = const()[name = tensor("op_2862"), val = tensor([1, 16, 64, 1500])]; tensor var_2863_cast_fp16 = reshape(shape = var_2862, x = key_45_cast_fp16)[name = tensor("op_2863_cast_fp16")]; tensor mh_w_45_transpose_x_0 = const()[name = tensor("mh_w_45_transpose_x_0"), val = tensor(true)]; tensor mh_w_45_transpose_y_0 = const()[name = tensor("mh_w_45_transpose_y_0"), val = tensor(false)]; tensor mh_w_45_cast_fp16 = matmul(transpose_x = mh_w_45_transpose_x_0, transpose_y = mh_w_45_transpose_y_0, x = var_2859_cast_fp16, y = var_2863_cast_fp16)[name = tensor("mh_w_45_cast_fp16")]; tensor var_2866_cast_fp16 = softmax(axis = var_2798, x = mh_w_45_cast_fp16)[name = tensor("op_2866_cast_fp16")]; tensor var_2867 = const()[name = tensor("op_2867"), val = tensor([1, 16, 64, 1500])]; tensor var_2868_cast_fp16 = reshape(shape = var_2867, x = value_45_cast_fp16)[name = tensor("op_2868_cast_fp16")]; tensor attn_45_transpose_x_0 = const()[name = tensor("attn_45_transpose_x_0"), val = tensor(false)]; tensor attn_45_transpose_y_0 = const()[name = tensor("attn_45_transpose_y_0"), val = tensor(true)]; tensor attn_45_cast_fp16 = matmul(transpose_x = attn_45_transpose_x_0, transpose_y = attn_45_transpose_y_0, x = var_2868_cast_fp16, y = var_2866_cast_fp16)[name = tensor("attn_45_cast_fp16")]; tensor var_2871 = const()[name = tensor("op_2871"), val = tensor([1, 1024, 1, 1500])]; tensor input_177_cast_fp16 = reshape(shape = var_2871, x = attn_45_cast_fp16)[name = tensor("input_177_cast_fp16")]; tensor obj_91_pad_type_0 = const()[name = tensor("obj_91_pad_type_0"), val = tensor("valid")]; tensor obj_91_strides_0 = const()[name = tensor("obj_91_strides_0"), val = tensor([1, 1])]; tensor obj_91_pad_0 = const()[name = tensor("obj_91_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_91_dilations_0 = const()[name = tensor("obj_91_dilations_0"), val = tensor([1, 1])]; tensor obj_91_groups_0 = const()[name = tensor("obj_91_groups_0"), val = tensor(1)]; tensor layers_22_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_22_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(570373696)))]; tensor layers_22_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_22_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(572470912)))]; tensor obj_91_cast_fp16 = conv(bias = layers_22_self_attn_o_proj_bias_to_fp16, dilations = obj_91_dilations_0, groups = obj_91_groups_0, pad = obj_91_pad_0, pad_type = obj_91_pad_type_0, strides = obj_91_strides_0, weight = layers_22_self_attn_o_proj_weight_to_fp16, x = input_177_cast_fp16)[name = tensor("obj_91_cast_fp16")]; tensor inputs_91_cast_fp16 = add(x = inputs_89_cast_fp16, y = obj_91_cast_fp16)[name = tensor("inputs_91_cast_fp16")]; tensor out_91_axes_0 = const()[name = tensor("out_91_axes_0"), val = tensor([1])]; tensor var_2889_to_fp16 = const()[name = tensor("op_2889_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_91_cast_fp16 = layer_norm(axes = out_91_axes_0, epsilon = var_2889_to_fp16, x = inputs_91_cast_fp16)[name = tensor("out_91_cast_fp16")]; tensor input_179_gamma_0_to_fp16 = const()[name = tensor("input_179_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(572473024)))]; tensor input_179_beta_0_to_fp16 = const()[name = tensor("input_179_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(572475136)))]; tensor input_179_epsilon_0_to_fp16 = const()[name = tensor("input_179_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_179_cast_fp16 = batch_norm(beta = input_179_beta_0_to_fp16, epsilon = input_179_epsilon_0_to_fp16, gamma = input_179_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_91_cast_fp16)[name = tensor("input_179_cast_fp16")]; tensor input_181_pad_type_0 = const()[name = tensor("input_181_pad_type_0"), val = tensor("valid")]; tensor input_181_strides_0 = const()[name = tensor("input_181_strides_0"), val = tensor([1, 1])]; tensor input_181_pad_0 = const()[name = tensor("input_181_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_181_dilations_0 = const()[name = tensor("input_181_dilations_0"), val = tensor([1, 1])]; tensor input_181_groups_0 = const()[name = tensor("input_181_groups_0"), val = tensor(1)]; tensor layers_22_fc1_weight_to_fp16 = const()[name = tensor("layers_22_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(572477248)))]; tensor layers_22_fc1_bias_to_fp16 = const()[name = tensor("layers_22_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(580865920)))]; tensor input_181_cast_fp16 = conv(bias = layers_22_fc1_bias_to_fp16, dilations = input_181_dilations_0, groups = input_181_groups_0, pad = input_181_pad_0, pad_type = input_181_pad_type_0, strides = input_181_strides_0, weight = layers_22_fc1_weight_to_fp16, x = input_179_cast_fp16)[name = tensor("input_181_cast_fp16")]; tensor input_183_mode_0 = const()[name = tensor("input_183_mode_0"), val = tensor("EXACT")]; tensor input_183_cast_fp16 = gelu(mode = input_183_mode_0, x = input_181_cast_fp16)[name = tensor("input_183_cast_fp16")]; tensor hidden_states_49_pad_type_0 = const()[name = tensor("hidden_states_49_pad_type_0"), val = tensor("valid")]; tensor hidden_states_49_strides_0 = const()[name = tensor("hidden_states_49_strides_0"), val = tensor([1, 1])]; tensor hidden_states_49_pad_0 = const()[name = tensor("hidden_states_49_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_49_dilations_0 = const()[name = tensor("hidden_states_49_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_49_groups_0 = const()[name = tensor("hidden_states_49_groups_0"), val = tensor(1)]; tensor layers_22_fc2_weight_to_fp16 = const()[name = tensor("layers_22_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(580874176)))]; tensor layers_22_fc2_bias_to_fp16 = const()[name = tensor("layers_22_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(589262848)))]; tensor hidden_states_49_cast_fp16 = conv(bias = layers_22_fc2_bias_to_fp16, dilations = hidden_states_49_dilations_0, groups = hidden_states_49_groups_0, pad = hidden_states_49_pad_0, pad_type = hidden_states_49_pad_type_0, strides = hidden_states_49_strides_0, weight = layers_22_fc2_weight_to_fp16, x = input_183_cast_fp16)[name = tensor("hidden_states_49_cast_fp16")]; tensor inputs_93_cast_fp16 = add(x = inputs_91_cast_fp16, y = hidden_states_49_cast_fp16)[name = tensor("inputs_93_cast_fp16")]; tensor var_2918 = const()[name = tensor("op_2918"), val = tensor(3)]; tensor out_93_axes_0 = const()[name = tensor("out_93_axes_0"), val = tensor([1])]; tensor var_2940_to_fp16 = const()[name = tensor("op_2940_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_93_cast_fp16 = layer_norm(axes = out_93_axes_0, epsilon = var_2940_to_fp16, x = inputs_93_cast_fp16)[name = tensor("out_93_cast_fp16")]; tensor obj_93_gamma_0_to_fp16 = const()[name = tensor("obj_93_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(589264960)))]; tensor obj_93_beta_0_to_fp16 = const()[name = tensor("obj_93_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(589267072)))]; tensor obj_93_epsilon_0_to_fp16 = const()[name = tensor("obj_93_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor obj_93_cast_fp16 = batch_norm(beta = obj_93_beta_0_to_fp16, epsilon = obj_93_epsilon_0_to_fp16, gamma = obj_93_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_93_cast_fp16)[name = tensor("obj_93_cast_fp16")]; tensor query_pad_type_0 = const()[name = tensor("query_pad_type_0"), val = tensor("valid")]; tensor query_strides_0 = const()[name = tensor("query_strides_0"), val = tensor([1, 1])]; tensor query_pad_0 = const()[name = tensor("query_pad_0"), val = tensor([0, 0, 0, 0])]; tensor query_dilations_0 = const()[name = tensor("query_dilations_0"), val = tensor([1, 1])]; tensor query_groups_0 = const()[name = tensor("query_groups_0"), val = tensor(1)]; tensor layers_23_self_attn_q_proj_weight_to_fp16 = const()[name = tensor("layers_23_self_attn_q_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(589269184)))]; tensor layers_23_self_attn_q_proj_bias_to_fp16 = const()[name = tensor("layers_23_self_attn_q_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(591366400)))]; tensor query_cast_fp16 = conv(bias = layers_23_self_attn_q_proj_bias_to_fp16, dilations = query_dilations_0, groups = query_groups_0, pad = query_pad_0, pad_type = query_pad_type_0, strides = query_strides_0, weight = layers_23_self_attn_q_proj_weight_to_fp16, x = obj_93_cast_fp16)[name = tensor("query_cast_fp16")]; tensor key_pad_type_0 = const()[name = tensor("key_pad_type_0"), val = tensor("valid")]; tensor key_strides_0 = const()[name = tensor("key_strides_0"), val = tensor([1, 1])]; tensor key_pad_0 = const()[name = tensor("key_pad_0"), val = tensor([0, 0, 0, 0])]; tensor key_dilations_0 = const()[name = tensor("key_dilations_0"), val = tensor([1, 1])]; tensor key_groups_0 = const()[name = tensor("key_groups_0"), val = tensor(1)]; tensor layers_23_self_attn_k_proj_weight_to_fp16 = const()[name = tensor("layers_23_self_attn_k_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(591368512)))]; tensor key_cast_fp16 = conv(dilations = key_dilations_0, groups = key_groups_0, pad = key_pad_0, pad_type = key_pad_type_0, strides = key_strides_0, weight = layers_23_self_attn_k_proj_weight_to_fp16, x = obj_93_cast_fp16)[name = tensor("key_cast_fp16")]; tensor value_pad_type_0 = const()[name = tensor("value_pad_type_0"), val = tensor("valid")]; tensor value_strides_0 = const()[name = tensor("value_strides_0"), val = tensor([1, 1])]; tensor value_pad_0 = const()[name = tensor("value_pad_0"), val = tensor([0, 0, 0, 0])]; tensor value_dilations_0 = const()[name = tensor("value_dilations_0"), val = tensor([1, 1])]; tensor value_groups_0 = const()[name = tensor("value_groups_0"), val = tensor(1)]; tensor layers_23_self_attn_v_proj_weight_to_fp16 = const()[name = tensor("layers_23_self_attn_v_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(593465728)))]; tensor layers_23_self_attn_v_proj_bias_to_fp16 = const()[name = tensor("layers_23_self_attn_v_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(595562944)))]; tensor value_cast_fp16 = conv(bias = layers_23_self_attn_v_proj_bias_to_fp16, dilations = value_dilations_0, groups = value_groups_0, pad = value_pad_0, pad_type = value_pad_type_0, strides = value_strides_0, weight = layers_23_self_attn_v_proj_weight_to_fp16, x = obj_93_cast_fp16)[name = tensor("value_cast_fp16")]; tensor var_2976 = const()[name = tensor("op_2976"), val = tensor([1, 16, 64, 1500])]; tensor mh_q_cast_fp16 = reshape(shape = var_2976, x = query_cast_fp16)[name = tensor("mh_q_cast_fp16")]; tensor var_2978_to_fp16 = const()[name = tensor("op_2978_to_fp16"), val = tensor(0x1p-3)]; tensor var_2979_cast_fp16 = mul(x = mh_q_cast_fp16, y = var_2978_to_fp16)[name = tensor("op_2979_cast_fp16")]; tensor var_2982 = const()[name = tensor("op_2982"), val = tensor([1, 16, 64, 1500])]; tensor var_2983_cast_fp16 = reshape(shape = var_2982, x = key_cast_fp16)[name = tensor("op_2983_cast_fp16")]; tensor mh_w_transpose_x_0 = const()[name = tensor("mh_w_transpose_x_0"), val = tensor(true)]; tensor mh_w_transpose_y_0 = const()[name = tensor("mh_w_transpose_y_0"), val = tensor(false)]; tensor mh_w_cast_fp16 = matmul(transpose_x = mh_w_transpose_x_0, transpose_y = mh_w_transpose_y_0, x = var_2979_cast_fp16, y = var_2983_cast_fp16)[name = tensor("mh_w_cast_fp16")]; tensor var_2986_cast_fp16 = softmax(axis = var_2918, x = mh_w_cast_fp16)[name = tensor("op_2986_cast_fp16")]; tensor var_2987 = const()[name = tensor("op_2987"), val = tensor([1, 16, 64, 1500])]; tensor var_2988_cast_fp16 = reshape(shape = var_2987, x = value_cast_fp16)[name = tensor("op_2988_cast_fp16")]; tensor attn_transpose_x_0 = const()[name = tensor("attn_transpose_x_0"), val = tensor(false)]; tensor attn_transpose_y_0 = const()[name = tensor("attn_transpose_y_0"), val = tensor(true)]; tensor attn_cast_fp16 = matmul(transpose_x = attn_transpose_x_0, transpose_y = attn_transpose_y_0, x = var_2988_cast_fp16, y = var_2986_cast_fp16)[name = tensor("attn_cast_fp16")]; tensor var_2991 = const()[name = tensor("op_2991"), val = tensor([1, 1024, 1, 1500])]; tensor input_185_cast_fp16 = reshape(shape = var_2991, x = attn_cast_fp16)[name = tensor("input_185_cast_fp16")]; tensor obj_pad_type_0 = const()[name = tensor("obj_pad_type_0"), val = tensor("valid")]; tensor obj_strides_0 = const()[name = tensor("obj_strides_0"), val = tensor([1, 1])]; tensor obj_pad_0 = const()[name = tensor("obj_pad_0"), val = tensor([0, 0, 0, 0])]; tensor obj_dilations_0 = const()[name = tensor("obj_dilations_0"), val = tensor([1, 1])]; tensor obj_groups_0 = const()[name = tensor("obj_groups_0"), val = tensor(1)]; tensor layers_23_self_attn_o_proj_weight_to_fp16 = const()[name = tensor("layers_23_self_attn_o_proj_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(595565056)))]; tensor layers_23_self_attn_o_proj_bias_to_fp16 = const()[name = tensor("layers_23_self_attn_o_proj_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(597662272)))]; tensor obj_cast_fp16 = conv(bias = layers_23_self_attn_o_proj_bias_to_fp16, dilations = obj_dilations_0, groups = obj_groups_0, pad = obj_pad_0, pad_type = obj_pad_type_0, strides = obj_strides_0, weight = layers_23_self_attn_o_proj_weight_to_fp16, x = input_185_cast_fp16)[name = tensor("obj_cast_fp16")]; tensor inputs_95_cast_fp16 = add(x = inputs_93_cast_fp16, y = obj_cast_fp16)[name = tensor("inputs_95_cast_fp16")]; tensor out_95_axes_0 = const()[name = tensor("out_95_axes_0"), val = tensor([1])]; tensor var_3009_to_fp16 = const()[name = tensor("op_3009_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_95_cast_fp16 = layer_norm(axes = out_95_axes_0, epsilon = var_3009_to_fp16, x = inputs_95_cast_fp16)[name = tensor("out_95_cast_fp16")]; tensor input_187_gamma_0_to_fp16 = const()[name = tensor("input_187_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(597664384)))]; tensor input_187_beta_0_to_fp16 = const()[name = tensor("input_187_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(597666496)))]; tensor input_187_epsilon_0_to_fp16 = const()[name = tensor("input_187_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor input_187_cast_fp16 = batch_norm(beta = input_187_beta_0_to_fp16, epsilon = input_187_epsilon_0_to_fp16, gamma = input_187_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_95_cast_fp16)[name = tensor("input_187_cast_fp16")]; tensor input_189_pad_type_0 = const()[name = tensor("input_189_pad_type_0"), val = tensor("valid")]; tensor input_189_strides_0 = const()[name = tensor("input_189_strides_0"), val = tensor([1, 1])]; tensor input_189_pad_0 = const()[name = tensor("input_189_pad_0"), val = tensor([0, 0, 0, 0])]; tensor input_189_dilations_0 = const()[name = tensor("input_189_dilations_0"), val = tensor([1, 1])]; tensor input_189_groups_0 = const()[name = tensor("input_189_groups_0"), val = tensor(1)]; tensor layers_23_fc1_weight_to_fp16 = const()[name = tensor("layers_23_fc1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(597668608)))]; tensor layers_23_fc1_bias_to_fp16 = const()[name = tensor("layers_23_fc1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(606057280)))]; tensor input_189_cast_fp16 = conv(bias = layers_23_fc1_bias_to_fp16, dilations = input_189_dilations_0, groups = input_189_groups_0, pad = input_189_pad_0, pad_type = input_189_pad_type_0, strides = input_189_strides_0, weight = layers_23_fc1_weight_to_fp16, x = input_187_cast_fp16)[name = tensor("input_189_cast_fp16")]; tensor input_mode_0 = const()[name = tensor("input_mode_0"), val = tensor("EXACT")]; tensor input_cast_fp16 = gelu(mode = input_mode_0, x = input_189_cast_fp16)[name = tensor("input_cast_fp16")]; tensor hidden_states_pad_type_0 = const()[name = tensor("hidden_states_pad_type_0"), val = tensor("valid")]; tensor hidden_states_strides_0 = const()[name = tensor("hidden_states_strides_0"), val = tensor([1, 1])]; tensor hidden_states_pad_0 = const()[name = tensor("hidden_states_pad_0"), val = tensor([0, 0, 0, 0])]; tensor hidden_states_dilations_0 = const()[name = tensor("hidden_states_dilations_0"), val = tensor([1, 1])]; tensor hidden_states_groups_0 = const()[name = tensor("hidden_states_groups_0"), val = tensor(1)]; tensor layers_23_fc2_weight_to_fp16 = const()[name = tensor("layers_23_fc2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(606065536)))]; tensor layers_23_fc2_bias_to_fp16 = const()[name = tensor("layers_23_fc2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(614454208)))]; tensor hidden_states_cast_fp16 = conv(bias = layers_23_fc2_bias_to_fp16, dilations = hidden_states_dilations_0, groups = hidden_states_groups_0, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = hidden_states_strides_0, weight = layers_23_fc2_weight_to_fp16, x = input_cast_fp16)[name = tensor("hidden_states_cast_fp16")]; tensor inputs_cast_fp16 = add(x = inputs_95_cast_fp16, y = hidden_states_cast_fp16)[name = tensor("inputs_cast_fp16")]; tensor out_axes_0 = const()[name = tensor("out_axes_0"), val = tensor([1])]; tensor var_3047_to_fp16 = const()[name = tensor("op_3047_to_fp16"), val = tensor(0x1.5p-17)]; tensor out_cast_fp16 = layer_norm(axes = out_axes_0, epsilon = var_3047_to_fp16, x = inputs_cast_fp16)[name = tensor("out_cast_fp16")]; tensor encoder_output_embeds_type_fp32_gamma_0_to_fp16 = const()[name = tensor("encoder_output_embeds_type_fp32_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(614456320)))]; tensor encoder_output_embeds_type_fp32_beta_0_to_fp16 = const()[name = tensor("encoder_output_embeds_type_fp32_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(614458432)))]; tensor encoder_output_embeds_type_fp32_epsilon_0_to_fp16 = const()[name = tensor("encoder_output_embeds_type_fp32_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; tensor encoder_output_embeds = batch_norm(beta = encoder_output_embeds_type_fp32_beta_0_to_fp16, epsilon = encoder_output_embeds_type_fp32_epsilon_0_to_fp16, gamma = encoder_output_embeds_type_fp32_gamma_0_to_fp16, mean = obj_1_mean_0_to_fp16, variance = obj_1_variance_0_to_fp16, x = out_cast_fp16)[name = tensor("encoder_output_embeds_type_fp32_cast_fp16")]; } -> (encoder_output_embeds); }