arnonl commited on
Commit
da51516
·
1 Parent(s): 68f1241

Upload PPO LunarLander-v2 trained agent

Browse files
My-ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b67be24fb72e1c32263d71ca8d001977dd87a93ffabae7a60fd33b1e7e6cfdd7
3
+ size 147218
My-ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
My-ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa328e12dc0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa328e12e50>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa328e12ee0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa328e12f70>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa328e0f040>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa328e0f0d0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa328e0f160>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa328e0f1f0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa328e0f280>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa328e0f310>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa328e0f3a0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa328e09ba0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671701513685574669,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNZK76DNWY//zuJvemhtr7wugm+QyJnPQAAAAAAAAAAc/mZvSm8Y7rVCEe6f/oRti+6Nzv2uWg5AACAPwAAgD/Naxi9j1IturN14jmfOQ61YfIOuzVWBrkAAIA/AACAP5qDW7xc8za6TthFOwzTyDbxqCg6DgJqugAAgD8AAIA/E/w5viyb0DyI5LY8pJ5mu2dTab71enI8AACAPwAAgD8ARhM+5HTePvoDeb2ggZi+SDpdPGOSZb0AAAAAAAAAADPie72daUc+tvrWPdO0X77/JAW6Fj2GvQAAAAAAAAAA5lohPSk0fLp4jII6q7ikuKqfDLtZWpS5AACAPwAAgD+AuWk9UijxuYK2pjh85g800I1nOwaRwbcAAIA/AACAPwBAvb1I05W63Ve2PMqnQDYpSWe6rg0zNQAAgD8AAAAAABOePSmAe7ra2BM63IINtqs20Lo/XSy5AACAPwAAgD/NZJW9KUA0us7hbjPGECSsmFBOu05NsrMAAIA/AACAP3CEaL4sBxY/f9SrPD6xp74n+ri9OmSAPQAAAAAAAAAAzR0HvR8lkLl0bT474zUkN2kn8rqVReg1AACAPwAAgD8TywO+zjCNvP54dzwlMn89S296PV0YGrwAAIA/AACAPzMJM75c3Qw75se6un6Euje9h7u8OpvbOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILe4/Mh3yYUCUhpRSlIwBbJRN6AOMAXSUR0CT4VFAmiQDdX2UKGgGaAloD0MIkQ4PYfxBYkCUhpRSlGgVTegDaBZHQJPi+VJL/S91fZQoaAZoCWgPQwi6aTNOwylhQJSGlFKUaBVN6ANoFkdAk+r7y+YdAHV9lChoBmgJaA9DCEBR2bAmJWZAlIaUUpRoFU3oA2gWR0CT+gsvIwM6dX2UKGgGaAloD0MIRgn6Cz21ZkCUhpRSlGgVTegDaBZHQJP8tiUgSvl1fZQoaAZoCWgPQwgFFsCUgWhfQJSGlFKUaBVN6ANoFkdAlAI+9i+cpnV9lChoBmgJaA9DCA7aq48H8GFAlIaUUpRoFU3oA2gWR0CUBV2CNCJGdX2UKGgGaAloD0MIXTY656fOZUCUhpRSlGgVTegDaBZHQJQLhwJgLJF1fZQoaAZoCWgPQwgJxOv6Bc9kQJSGlFKUaBVN6ANoFkdAlAuZQ+EAYHV9lChoBmgJaA9DCFjFG5nHsmBAlIaUUpRoFU3oA2gWR0CUDSwiqyWzdX2UKGgGaAloD0MIgJ9x4cAeZkCUhpRSlGgVTegDaBZHQJQN3JbMX8B1fZQoaAZoCWgPQwiNmUS94LNeQJSGlFKUaBVN6ANoFkdAlA6Vpwjt5XV9lChoBmgJaA9DCCY0SSwp+VxAlIaUUpRoFU3oA2gWR0CUD6l6JIlMdX2UKGgGaAloD0MI9KRMami/YUCUhpRSlGgVTegDaBZHQJQP4cxTKkl1fZQoaAZoCWgPQwjn4QSm06VjQJSGlFKUaBVN6ANoFkdAlBGdtygf2nV9lChoBmgJaA9DCMNhaeBHwWFAlIaUUpRoFU3oA2gWR0CUFAE6DGtIdX2UKGgGaAloD0MIXOSerm4SY0CUhpRSlGgVTegDaBZHQJQrSx5cC5p1fZQoaAZoCWgPQwjcY+lDF3RiQJSGlFKUaBVN6ANoFkdAlCz699MK1HV9lChoBmgJaA9DCDygbMqVl2RAlIaUUpRoFU3oA2gWR0CUNMQ+UyHmdX2UKGgGaAloD0MI2nOZmgTkZUCUhpRSlGgVTegDaBZHQJRDgKzAvct1fZQoaAZoCWgPQwgxC+2cZl5jQJSGlFKUaBVN6ANoFkdAlEY3/5tWMnV9lChoBmgJaA9DCLxbWaKzYWVAlIaUUpRoFU3oA2gWR0CUTDC7btZ3dX2UKGgGaAloD0MIXTKOkexKYECUhpRSlGgVTegDaBZHQJRPlZIQOFx1fZQoaAZoCWgPQwjA6PLmcBdnQJSGlFKUaBVN6ANoFkdAlFZxeHBUJnV9lChoBmgJaA9DCEijAifbt2RAlIaUUpRoFU3oA2gWR0CUVoQRf4RFdX2UKGgGaAloD0MIzqlkACgWYkCUhpRSlGgVTegDaBZHQJRYK4tpVS51fZQoaAZoCWgPQwiJmBJJ9MlmQJSGlFKUaBVN6ANoFkdAlFj6+ajN6nV9lChoBmgJaA9DCEYIjzYOZWZAlIaUUpRoFU3oA2gWR0CUWca2nbZfdX2UKGgGaAloD0MIAtiACPH7ZECUhpRSlGgVTegDaBZHQJRa/SYw7DF1fZQoaAZoCWgPQwhTA83nXAlhQJSGlFKUaBVN6ANoFkdAlFtAIdELIHV9lChoBmgJaA9DCLSPFfy2QWBAlIaUUpRoFU3oA2gWR0CUXTZYPoV3dX2UKGgGaAloD0MIg/dVuVC8ZkCUhpRSlGgVTegDaBZHQJRgAD5j6N51fZQoaAZoCWgPQwiJYvIGmN5kQJSGlFKUaBVN6ANoFkdAlHg57ojfN3V9lChoBmgJaA9DCMAF2bJ8/1xAlIaUUpRoFU3oA2gWR0CUejXmeUY9dX2UKGgGaAloD0MIfQiqRq9ZYUCUhpRSlGgVTegDaBZHQJSDSpJf6XV1fZQoaAZoCWgPQwjqBgq8E11kQJSGlFKUaBVN6ANoFkdAlJg6FqSHM3V9lChoBmgJaA9DCDbK+s3EUmJAlIaUUpRoFU3oA2gWR0CUmyBD5TIedX2UKGgGaAloD0MIkgciizTPY0CUhpRSlGgVTegDaBZHQJShfPZ7HAB1fZQoaAZoCWgPQwgRcAhV6hdgQJSGlFKUaBVN6ANoFkdAlKUktyxRmHV9lChoBmgJaA9DCJs8ZTVd8GVAlIaUUpRoFU3oA2gWR0CUrENTLns+dX2UKGgGaAloD0MIoSx8fS1eY0CUhpRSlGgVTegDaBZHQJSsV2mpEQZ1fZQoaAZoCWgPQwhfJLTl3FZkQJSGlFKUaBVN6ANoFkdAlK4IxpL26HV9lChoBmgJaA9DCM7HtaFiMWZAlIaUUpRoFU3oA2gWR0CUrsxyn1nNdX2UKGgGaAloD0MInN8w0SAPYkCUhpRSlGgVTegDaBZHQJSvkaJhvzh1fZQoaAZoCWgPQwjCTrFqELhlQJSGlFKUaBVN6ANoFkdAlLCnBk7OmnV9lChoBmgJaA9DCMAklSlmIGJAlIaUUpRoFU3oA2gWR0CUsOC1Z1V6dX2UKGgGaAloD0MIpvCg2XWkZECUhpRSlGgVTegDaBZHQJSygfFJg9h1fZQoaAZoCWgPQwhd+peksjlkQJSGlFKUaBVN6ANoFkdAlLTFEiMYM3V9lChoBmgJaA9DCOF7f4P2XWNAlIaUUpRoFU3oA2gWR0CUzBZkkKNRdX2UKGgGaAloD0MI6fLmcK0JZkCUhpRSlGgVTegDaBZHQJTNrpbD/ER1fZQoaAZoCWgPQwhmMhzP56RlQJSGlFKUaBVN6ANoFkdAlNTylWOp9HV9lChoBmgJaA9DCKA4gH5fNGdAlIaUUpRoFU3oA2gWR0CU4lnjyWiUdX2UKGgGaAloD0MIz8DIy5qRY0CUhpRSlGgVTegDaBZHQJTktRGc4HZ1fZQoaAZoCWgPQwib/uxHCgFlQJSGlFKUaBVN6ANoFkdAlOnn/95yEXV9lChoBmgJaA9DCCob1lSW32dAlIaUUpRoFU3oA2gWR0CU7O6p5u63dX2UKGgGaAloD0MIsIwN3Wy8Y0CUhpRSlGgVTegDaBZHQJTzD9jwx351fZQoaAZoCWgPQwiRQln4er5hQJSGlFKUaBVN6ANoFkdAlPMjER8MNXV9lChoBmgJaA9DCB5tHLGWzmBAlIaUUpRoFU3oA2gWR0CU9Kv+wTufdX2UKGgGaAloD0MIahfTTPe9YkCUhpRSlGgVTegDaBZHQJT1YNkOI691fZQoaAZoCWgPQwhfCg+aXdteQJSGlFKUaBVN6ANoFkdAlPYchgVoH3V9lChoBmgJaA9DCDgVqTC23GNAlIaUUpRoFU3oA2gWR0CU9zfzBhx6dX2UKGgGaAloD0MInkSEf5E6ZkCUhpRSlGgVTegDaBZHQJT3fmzSkTJ1fZQoaAZoCWgPQwhblxqhH+dkQJSGlFKUaBVN6ANoFkdAlPk62BreqXV9lChoBmgJaA9DCEaU9gbfLGJAlIaUUpRoFU3oA2gWR0CU+634sVcmdX2UKGgGaAloD0MI1nCRe7qIY0CUhpRSlGgVTegDaBZHQJT/5VaOgg51fZQoaAZoCWgPQwjaci7FVY5kQJSGlFKUaBVN6ANoFkdAlRTQDRtxdnV9lChoBmgJaA9DCJF7urrjlmFAlIaUUpRoFU3oA2gWR0CVHS9EkSmJdX2UKGgGaAloD0MI0GG+vICDZ0CUhpRSlGgVTegDaBZHQJUsH9hqj8F1fZQoaAZoCWgPQwgbhLndS1ZkQJSGlFKUaBVN6ANoFkdAlS60z0pVj3V9lChoBmgJaA9DCGyU9ZsJS2ZAlIaUUpRoFU3oA2gWR0CVNF9Ujs2OdX2UKGgGaAloD0MIZCR7hJp2ZkCUhpRSlGgVTegDaBZHQJU3zDjzZpV1fZQoaAZoCWgPQwhpHOp3YZNeQJSGlFKUaBVN6ANoFkdAlT6ZT2nKn3V9lChoBmgJaA9DCH9N1qiHNV9AlIaUUpRoFU3oA2gWR0CVPqnH/95ydX2UKGgGaAloD0MI8BMH0O/HWUCUhpRSlGgVTegDaBZHQJVAPvqkdmx1fZQoaAZoCWgPQwh1jgHZ62ZiQJSGlFKUaBVN6ANoFkdAlUEEiliz9nV9lChoBmgJaA9DCIfEPZa+72VAlIaUUpRoFU3oA2gWR0CVQc5N47iidX2UKGgGaAloD0MIuOf500YHZECUhpRSlGgVTegDaBZHQJVC7WCmMwV1fZQoaAZoCWgPQwgrMc9K2pNiQJSGlFKUaBVN6ANoFkdAlUMrncL0BnV9lChoBmgJaA9DCCDURQrlUWJAlIaUUpRoFU3oA2gWR0CVRM65Gz8hdX2UKGgGaAloD0MIYJLKFPO1Y0CUhpRSlGgVTegDaBZHQJVG/2K2rn11fZQoaAZoCWgPQwgqHEEqxU4wQJSGlFKUaBVL2GgWR0CVSi/h2nsLdX2UKGgGaAloD0MIotReRNvtXECUhpRSlGgVTegDaBZHQJVLIAT7EYR1fZQoaAZoCWgPQwh56pEGtzFoQJSGlFKUaBVN6ANoFkdAlUy4igTRIHV9lChoBmgJaA9DCOBMTBfi2mVAlIaUUpRoFU3oA2gWR0CVZyRjz7MxdX2UKGgGaAloD0MIovDZOjiIRkCUhpRSlGgVS9NoFkdAlWqtPpIMB3V9lChoBmgJaA9DCNzykZT0SmRAlIaUUpRoFU3oA2gWR0CVc0BjWkJsdX2UKGgGaAloD0MIKzHPSlqQZECUhpRSlGgVTegDaBZHQJV1aW6bvw51fZQoaAZoCWgPQwjVCP1MvQ1nQJSGlFKUaBVN6ANoFkdAlXpIG2TgVHV9lChoBmgJaA9DCJKU9DA0NmdAlIaUUpRoFU3oA2gWR0CVfSJmukk9dX2UKGgGaAloD0MIn5PeNz7OYkCUhpRSlGgVTegDaBZHQJWDDu8brC51fZQoaAZoCWgPQwiOP1HZsNxkQJSGlFKUaBVN6ANoFkdAlYMcl1KXfXV9lChoBmgJaA9DCCtQi8HDAWNAlIaUUpRoFU3oA2gWR0CVhIq94/u9dX2UKGgGaAloD0MIBoAqblz0YkCUhpRSlGgVTegDaBZHQJWF8tL+PzZ1fZQoaAZoCWgPQwjpCrYRz3RhQJSGlFKUaBVN6ANoFkdAlYcQsCkoF3V9lChoBmgJaA9DCFcIq7GEf2NAlIaUUpRoFU3oA2gWR0CVh0f4yoGZdX2UKGgGaAloD0MICqNZ2b6uZ0CUhpRSlGgVTegDaBZHQJWI/ChvitJ1fZQoaAZoCWgPQwgrhUAucdVgQJSGlFKUaBVN6ANoFkdAlYtbKzRhMXV9lChoBmgJaA9DCECH+fICRnJAlIaUUpRoFU34AWgWR0CVi5rnTy8SdX2UKGgGaAloD0MIucSRB6L1YkCUhpRSlGgVTegDaBZHQJWObzlLeyl1fZQoaAZoCWgPQwjdJXFWRIBoQJSGlFKUaBVN6ANoFkdAlY9VajesP3VlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
My-ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:053ba08c7b4e8314d4235538457da9a5226d00dae49a41991195aedb2f44e4a0
3
+ size 87929
My-ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab64f95868c4c81836c96732e7beb1761fca004b5c0288a7ab4ef8287541b8b4
3
+ size 43201
My-ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
My-ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 257.00 +/- 17.90
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa328e12dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa328e12e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa328e12ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa328e12f70>", "_build": "<function ActorCriticPolicy._build at 0x7fa328e0f040>", "forward": "<function ActorCriticPolicy.forward at 0x7fa328e0f0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa328e0f160>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa328e0f1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa328e0f280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa328e0f310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa328e0f3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa328e09ba0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671701513685574669, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHNZK76DNWY//zuJvemhtr7wugm+QyJnPQAAAAAAAAAAc/mZvSm8Y7rVCEe6f/oRti+6Nzv2uWg5AACAPwAAgD/Naxi9j1IturN14jmfOQ61YfIOuzVWBrkAAIA/AACAP5qDW7xc8za6TthFOwzTyDbxqCg6DgJqugAAgD8AAIA/E/w5viyb0DyI5LY8pJ5mu2dTab71enI8AACAPwAAgD8ARhM+5HTePvoDeb2ggZi+SDpdPGOSZb0AAAAAAAAAADPie72daUc+tvrWPdO0X77/JAW6Fj2GvQAAAAAAAAAA5lohPSk0fLp4jII6q7ikuKqfDLtZWpS5AACAPwAAgD+AuWk9UijxuYK2pjh85g800I1nOwaRwbcAAIA/AACAPwBAvb1I05W63Ve2PMqnQDYpSWe6rg0zNQAAgD8AAAAAABOePSmAe7ra2BM63IINtqs20Lo/XSy5AACAPwAAgD/NZJW9KUA0us7hbjPGECSsmFBOu05NsrMAAIA/AACAP3CEaL4sBxY/f9SrPD6xp74n+ri9OmSAPQAAAAAAAAAAzR0HvR8lkLl0bT474zUkN2kn8rqVReg1AACAPwAAgD8TywO+zjCNvP54dzwlMn89S296PV0YGrwAAIA/AACAPzMJM75c3Qw75se6un6Euje9h7u8OpvbOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILe4/Mh3yYUCUhpRSlIwBbJRN6AOMAXSUR0CT4VFAmiQDdX2UKGgGaAloD0MIkQ4PYfxBYkCUhpRSlGgVTegDaBZHQJPi+VJL/S91fZQoaAZoCWgPQwi6aTNOwylhQJSGlFKUaBVN6ANoFkdAk+r7y+YdAHV9lChoBmgJaA9DCEBR2bAmJWZAlIaUUpRoFU3oA2gWR0CT+gsvIwM6dX2UKGgGaAloD0MIRgn6Cz21ZkCUhpRSlGgVTegDaBZHQJP8tiUgSvl1fZQoaAZoCWgPQwgFFsCUgWhfQJSGlFKUaBVN6ANoFkdAlAI+9i+cpnV9lChoBmgJaA9DCA7aq48H8GFAlIaUUpRoFU3oA2gWR0CUBV2CNCJGdX2UKGgGaAloD0MIXTY656fOZUCUhpRSlGgVTegDaBZHQJQLhwJgLJF1fZQoaAZoCWgPQwgJxOv6Bc9kQJSGlFKUaBVN6ANoFkdAlAuZQ+EAYHV9lChoBmgJaA9DCFjFG5nHsmBAlIaUUpRoFU3oA2gWR0CUDSwiqyWzdX2UKGgGaAloD0MIgJ9x4cAeZkCUhpRSlGgVTegDaBZHQJQN3JbMX8B1fZQoaAZoCWgPQwiNmUS94LNeQJSGlFKUaBVN6ANoFkdAlA6Vpwjt5XV9lChoBmgJaA9DCCY0SSwp+VxAlIaUUpRoFU3oA2gWR0CUD6l6JIlMdX2UKGgGaAloD0MI9KRMami/YUCUhpRSlGgVTegDaBZHQJQP4cxTKkl1fZQoaAZoCWgPQwjn4QSm06VjQJSGlFKUaBVN6ANoFkdAlBGdtygf2nV9lChoBmgJaA9DCMNhaeBHwWFAlIaUUpRoFU3oA2gWR0CUFAE6DGtIdX2UKGgGaAloD0MIXOSerm4SY0CUhpRSlGgVTegDaBZHQJQrSx5cC5p1fZQoaAZoCWgPQwjcY+lDF3RiQJSGlFKUaBVN6ANoFkdAlCz699MK1HV9lChoBmgJaA9DCDygbMqVl2RAlIaUUpRoFU3oA2gWR0CUNMQ+UyHmdX2UKGgGaAloD0MI2nOZmgTkZUCUhpRSlGgVTegDaBZHQJRDgKzAvct1fZQoaAZoCWgPQwgxC+2cZl5jQJSGlFKUaBVN6ANoFkdAlEY3/5tWMnV9lChoBmgJaA9DCLxbWaKzYWVAlIaUUpRoFU3oA2gWR0CUTDC7btZ3dX2UKGgGaAloD0MIXTKOkexKYECUhpRSlGgVTegDaBZHQJRPlZIQOFx1fZQoaAZoCWgPQwjA6PLmcBdnQJSGlFKUaBVN6ANoFkdAlFZxeHBUJnV9lChoBmgJaA9DCEijAifbt2RAlIaUUpRoFU3oA2gWR0CUVoQRf4RFdX2UKGgGaAloD0MIzqlkACgWYkCUhpRSlGgVTegDaBZHQJRYK4tpVS51fZQoaAZoCWgPQwiJmBJJ9MlmQJSGlFKUaBVN6ANoFkdAlFj6+ajN6nV9lChoBmgJaA9DCEYIjzYOZWZAlIaUUpRoFU3oA2gWR0CUWca2nbZfdX2UKGgGaAloD0MIAtiACPH7ZECUhpRSlGgVTegDaBZHQJRa/SYw7DF1fZQoaAZoCWgPQwhTA83nXAlhQJSGlFKUaBVN6ANoFkdAlFtAIdELIHV9lChoBmgJaA9DCLSPFfy2QWBAlIaUUpRoFU3oA2gWR0CUXTZYPoV3dX2UKGgGaAloD0MIg/dVuVC8ZkCUhpRSlGgVTegDaBZHQJRgAD5j6N51fZQoaAZoCWgPQwiJYvIGmN5kQJSGlFKUaBVN6ANoFkdAlHg57ojfN3V9lChoBmgJaA9DCMAF2bJ8/1xAlIaUUpRoFU3oA2gWR0CUejXmeUY9dX2UKGgGaAloD0MIfQiqRq9ZYUCUhpRSlGgVTegDaBZHQJSDSpJf6XV1fZQoaAZoCWgPQwjqBgq8E11kQJSGlFKUaBVN6ANoFkdAlJg6FqSHM3V9lChoBmgJaA9DCDbK+s3EUmJAlIaUUpRoFU3oA2gWR0CUmyBD5TIedX2UKGgGaAloD0MIkgciizTPY0CUhpRSlGgVTegDaBZHQJShfPZ7HAB1fZQoaAZoCWgPQwgRcAhV6hdgQJSGlFKUaBVN6ANoFkdAlKUktyxRmHV9lChoBmgJaA9DCJs8ZTVd8GVAlIaUUpRoFU3oA2gWR0CUrENTLns+dX2UKGgGaAloD0MIoSx8fS1eY0CUhpRSlGgVTegDaBZHQJSsV2mpEQZ1fZQoaAZoCWgPQwhfJLTl3FZkQJSGlFKUaBVN6ANoFkdAlK4IxpL26HV9lChoBmgJaA9DCM7HtaFiMWZAlIaUUpRoFU3oA2gWR0CUrsxyn1nNdX2UKGgGaAloD0MInN8w0SAPYkCUhpRSlGgVTegDaBZHQJSvkaJhvzh1fZQoaAZoCWgPQwjCTrFqELhlQJSGlFKUaBVN6ANoFkdAlLCnBk7OmnV9lChoBmgJaA9DCMAklSlmIGJAlIaUUpRoFU3oA2gWR0CUsOC1Z1V6dX2UKGgGaAloD0MIpvCg2XWkZECUhpRSlGgVTegDaBZHQJSygfFJg9h1fZQoaAZoCWgPQwhd+peksjlkQJSGlFKUaBVN6ANoFkdAlLTFEiMYM3V9lChoBmgJaA9DCOF7f4P2XWNAlIaUUpRoFU3oA2gWR0CUzBZkkKNRdX2UKGgGaAloD0MI6fLmcK0JZkCUhpRSlGgVTegDaBZHQJTNrpbD/ER1fZQoaAZoCWgPQwhmMhzP56RlQJSGlFKUaBVN6ANoFkdAlNTylWOp9HV9lChoBmgJaA9DCKA4gH5fNGdAlIaUUpRoFU3oA2gWR0CU4lnjyWiUdX2UKGgGaAloD0MIz8DIy5qRY0CUhpRSlGgVTegDaBZHQJTktRGc4HZ1fZQoaAZoCWgPQwib/uxHCgFlQJSGlFKUaBVN6ANoFkdAlOnn/95yEXV9lChoBmgJaA9DCCob1lSW32dAlIaUUpRoFU3oA2gWR0CU7O6p5u63dX2UKGgGaAloD0MIsIwN3Wy8Y0CUhpRSlGgVTegDaBZHQJTzD9jwx351fZQoaAZoCWgPQwiRQln4er5hQJSGlFKUaBVN6ANoFkdAlPMjER8MNXV9lChoBmgJaA9DCB5tHLGWzmBAlIaUUpRoFU3oA2gWR0CU9Kv+wTufdX2UKGgGaAloD0MIahfTTPe9YkCUhpRSlGgVTegDaBZHQJT1YNkOI691fZQoaAZoCWgPQwhfCg+aXdteQJSGlFKUaBVN6ANoFkdAlPYchgVoH3V9lChoBmgJaA9DCDgVqTC23GNAlIaUUpRoFU3oA2gWR0CU9zfzBhx6dX2UKGgGaAloD0MInkSEf5E6ZkCUhpRSlGgVTegDaBZHQJT3fmzSkTJ1fZQoaAZoCWgPQwhblxqhH+dkQJSGlFKUaBVN6ANoFkdAlPk62BreqXV9lChoBmgJaA9DCEaU9gbfLGJAlIaUUpRoFU3oA2gWR0CU+634sVcmdX2UKGgGaAloD0MI1nCRe7qIY0CUhpRSlGgVTegDaBZHQJT/5VaOgg51fZQoaAZoCWgPQwjaci7FVY5kQJSGlFKUaBVN6ANoFkdAlRTQDRtxdnV9lChoBmgJaA9DCJF7urrjlmFAlIaUUpRoFU3oA2gWR0CVHS9EkSmJdX2UKGgGaAloD0MI0GG+vICDZ0CUhpRSlGgVTegDaBZHQJUsH9hqj8F1fZQoaAZoCWgPQwgbhLndS1ZkQJSGlFKUaBVN6ANoFkdAlS60z0pVj3V9lChoBmgJaA9DCGyU9ZsJS2ZAlIaUUpRoFU3oA2gWR0CVNF9Ujs2OdX2UKGgGaAloD0MIZCR7hJp2ZkCUhpRSlGgVTegDaBZHQJU3zDjzZpV1fZQoaAZoCWgPQwhpHOp3YZNeQJSGlFKUaBVN6ANoFkdAlT6ZT2nKn3V9lChoBmgJaA9DCH9N1qiHNV9AlIaUUpRoFU3oA2gWR0CVPqnH/95ydX2UKGgGaAloD0MI8BMH0O/HWUCUhpRSlGgVTegDaBZHQJVAPvqkdmx1fZQoaAZoCWgPQwh1jgHZ62ZiQJSGlFKUaBVN6ANoFkdAlUEEiliz9nV9lChoBmgJaA9DCIfEPZa+72VAlIaUUpRoFU3oA2gWR0CVQc5N47iidX2UKGgGaAloD0MIuOf500YHZECUhpRSlGgVTegDaBZHQJVC7WCmMwV1fZQoaAZoCWgPQwgrMc9K2pNiQJSGlFKUaBVN6ANoFkdAlUMrncL0BnV9lChoBmgJaA9DCCDURQrlUWJAlIaUUpRoFU3oA2gWR0CVRM65Gz8hdX2UKGgGaAloD0MIYJLKFPO1Y0CUhpRSlGgVTegDaBZHQJVG/2K2rn11fZQoaAZoCWgPQwgqHEEqxU4wQJSGlFKUaBVL2GgWR0CVSi/h2nsLdX2UKGgGaAloD0MIotReRNvtXECUhpRSlGgVTegDaBZHQJVLIAT7EYR1fZQoaAZoCWgPQwh56pEGtzFoQJSGlFKUaBVN6ANoFkdAlUy4igTRIHV9lChoBmgJaA9DCOBMTBfi2mVAlIaUUpRoFU3oA2gWR0CVZyRjz7MxdX2UKGgGaAloD0MIovDZOjiIRkCUhpRSlGgVS9NoFkdAlWqtPpIMB3V9lChoBmgJaA9DCNzykZT0SmRAlIaUUpRoFU3oA2gWR0CVc0BjWkJsdX2UKGgGaAloD0MIKzHPSlqQZECUhpRSlGgVTegDaBZHQJV1aW6bvw51fZQoaAZoCWgPQwjVCP1MvQ1nQJSGlFKUaBVN6ANoFkdAlXpIG2TgVHV9lChoBmgJaA9DCJKU9DA0NmdAlIaUUpRoFU3oA2gWR0CVfSJmukk9dX2UKGgGaAloD0MIn5PeNz7OYkCUhpRSlGgVTegDaBZHQJWDDu8brC51fZQoaAZoCWgPQwiOP1HZsNxkQJSGlFKUaBVN6ANoFkdAlYMcl1KXfXV9lChoBmgJaA9DCCtQi8HDAWNAlIaUUpRoFU3oA2gWR0CVhIq94/u9dX2UKGgGaAloD0MIBoAqblz0YkCUhpRSlGgVTegDaBZHQJWF8tL+PzZ1fZQoaAZoCWgPQwjpCrYRz3RhQJSGlFKUaBVN6ANoFkdAlYcQsCkoF3V9lChoBmgJaA9DCFcIq7GEf2NAlIaUUpRoFU3oA2gWR0CVh0f4yoGZdX2UKGgGaAloD0MICqNZ2b6uZ0CUhpRSlGgVTegDaBZHQJWI/ChvitJ1fZQoaAZoCWgPQwgrhUAucdVgQJSGlFKUaBVN6ANoFkdAlYtbKzRhMXV9lChoBmgJaA9DCECH+fICRnJAlIaUUpRoFU34AWgWR0CVi5rnTy8SdX2UKGgGaAloD0MIucSRB6L1YkCUhpRSlGgVTegDaBZHQJWObzlLeyl1fZQoaAZoCWgPQwjdJXFWRIBoQJSGlFKUaBVN6ANoFkdAlY9VajesP3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (249 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.999247097704, "std_reward": 17.903474609501703, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-22T09:54:41.255780"}