Akash Singh commited on
Commit
9b3c2fe
·
1 Parent(s): 924a043

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## bert-base-uncased finetuned on IMDB dataset
2
+
3
+ Evaluation set was created by taking 1000 samples from test set
4
+
5
+ ```
6
+ DatasetDict({
7
+ train: Dataset({
8
+ features: ['text', 'label'],
9
+ num_rows: 25000
10
+ })
11
+ dev: Dataset({
12
+ features: ['text', 'label'],
13
+ num_rows: 1000
14
+ })
15
+ test: Dataset({
16
+ features: ['text', 'label'],
17
+ num_rows: 24000
18
+ })
19
+ })
20
+ ```
21
+
22
+ Parameters
23
+ ```
24
+ max_sequence_length = 128
25
+ batch_size = 32
26
+ eval_steps = 100
27
+ learning_rate=2e-05
28
+ num_train_epochs=5
29
+ early_stopping_patience = 10
30
+ ```
31
+
32
+ ## Training Run
33
+ ```
34
+ [2700/3910 1:11:43 < 32:09, 0.63 it/s, Epoch 3/5]
35
+ Step Training Loss Validation Loss Accuracy Precision Recall F1 Runtime Samples Per Second
36
+ 100 No log 0.371974 0.845000 0.798942 0.917004 0.853911 15.256900 65.544000
37
+ 200 No log 0.349631 0.850000 0.873913 0.813765 0.842767 15.288600 65.408000
38
+ 300 No log 0.359376 0.845000 0.869281 0.807692 0.837356 15.303900 65.343000
39
+ 400 No log 0.307613 0.870000 0.851351 0.892713 0.871542 15.358400 65.111000
40
+ 500 0.364500 0.309362 0.856000 0.807018 0.931174 0.864662 15.326100 65.248000
41
+ 600 0.364500 0.302709 0.867000 0.881607 0.844130 0.862461 15.324400 65.255000
42
+ 700 0.364500 0.300102 0.871000 0.894168 0.838057 0.865204 15.474900 64.621000
43
+ 800 0.364500 0.383784 0.866000 0.833333 0.910931 0.870406 15.380100 65.019000
44
+ 900 0.364500 0.309934 0.874000 0.881743 0.860324 0.870902 15.358900 65.109000
45
+ 1000 0.254600 0.332236 0.872000 0.894397 0.840081 0.866388 15.442700 64.756000
46
+ 1100 0.254600 0.330807 0.871000 0.877847 0.858300 0.867963 15.410900 64.889000
47
+ 1200 0.254600 0.352724 0.872000 0.925581 0.805668 0.861472 15.272800 65.476000
48
+ 1300 0.254600 0.278529 0.881000 0.891441 0.864372 0.877698 15.408200 64.900000
49
+ 1400 0.254600 0.291371 0.878000 0.854962 0.906883 0.880157 15.427400 64.820000
50
+ 1500 0.208400 0.324827 0.869000 0.904232 0.821862 0.861082 15.338600 65.195000
51
+ 1600 0.208400 0.377024 0.884000 0.898734 0.862348 0.880165 15.414500 64.874000
52
+ 1700 0.208400 0.375274 0.885000 0.881288 0.886640 0.883956 15.367200 65.073000
53
+ 1800 0.208400 0.378904 0.880000 0.877016 0.880567 0.878788 15.363900 65.088000
54
+ 1900 0.208400 0.410517 0.874000 0.866534 0.880567 0.873494 15.324700 65.254000
55
+ 2000 0.130800 0.404030 0.876000 0.888655 0.856275 0.872165 15.414200 64.875000
56
+ 2100 0.130800 0.390763 0.883000 0.882353 0.880567 0.881459 15.341500 65.183000
57
+ 2200 0.130800 0.417967 0.880000 0.875502 0.882591 0.879032 15.351300 65.141000
58
+ 2300 0.130800 0.390974 0.883000 0.898520 0.860324 0.879007 15.396100 64.952000
59
+ 2400 0.130800 0.479739 0.874000 0.856589 0.894737 0.875248 15.460500 64.681000
60
+ 2500 0.098400 0.473215 0.875000 0.883576 0.860324 0.871795 15.392200 64.968000
61
+ 2600 0.098400 0.532294 0.872000 0.889362 0.846154 0.867220 15.364100 65.087000
62
+ 2700 0.098400 0.536664 0.881000 0.880325 0.878543 0.879433 15.351100 65.142000
63
+
64
+ TrainOutput(global_step=2700, training_loss=0.2004435383832013, metrics={'train_runtime': 4304.5331, 'train_samples_per_second': 0.908, 'total_flos': 7258763970957312, 'epoch': 3.45})
65
+ ```
66
+
67
+ ## Classification Report
68
+ ```
69
+ precision recall f1-score support
70
+
71
+ 0 0.90 0.87 0.89 11994
72
+ 1 0.87 0.90 0.89 12006
73
+
74
+ accuracy 0.89 24000
75
+ macro avg 0.89 0.89 0.89 24000
76
+ weighted avg 0.89 0.89 0.89 24000
77
+ ```