simpletuner-lora

This is a full rank finetune derived from pixart-alpha/pixart-sigma-xl-2-1024-ms.

The main validation prompt used during training was:

A photo-realistic image of a cat

Validation settings

  • CFG: 3.5
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: ddim
  • Seed: 42
  • Resolutions: 1024x1024,1280x768

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
A photo-realistic image of a cat
Negative Prompt
blurry, cropped, ugly
Prompt
A photo-realistic image of a cat
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0
  • Training steps: 10000
  • Learning rate: 0.0001
    • Learning rate schedule: polynomial
    • Warmup steps: 100
  • Max grad value: 0.01
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True
  • Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])
  • Optimizer: adamw_bf16
  • Trainable parameter precision: Pure BF16
  • Base model precision: no_change
  • Caption dropout probability: 0.1%

Datasets

pseudo-camera-10k-pixart

  • Repeats: 0
  • Total number of images: 14102
  • Total number of aspect buckets: 1
  • Resolution: 1.0 megapixels
  • Cropped: True
  • Crop style: random
  • Crop aspect: square
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'artemonlysuno/simpletuner-lora'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16

prompt = "A photo-realistic image of a cat"
negative_prompt = 'blurry, cropped, ugly'

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=3.5,
).images[0]

model_output.save("output.png", format="PNG")
Downloads last month
33
Inference Examples
Examples
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support