simpletuner-lora
This is a full rank finetune derived from pixart-alpha/pixart-sigma-xl-2-1024-ms.
The main validation prompt used during training was:
A photo-realistic image of a cat
Validation settings
- CFG:
3.5
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
ddim
- Seed:
42
- Resolutions:
1024x1024,1280x768
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:

- Prompt
- unconditional (blank prompt)
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- unconditional (blank prompt)
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- A photo-realistic image of a cat
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- A photo-realistic image of a cat
- Negative Prompt
- blurry, cropped, ugly
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
- Training epochs: 0
- Training steps: 10000
- Learning rate: 0.0001
- Learning rate schedule: polynomial
- Warmup steps: 100
- Max grad value: 0.01
- Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Base model precision:
no_change
- Caption dropout probability: 0.1%
Datasets
pseudo-camera-10k-pixart
- Repeats: 0
- Total number of images: 14102
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'artemonlysuno/simpletuner-lora'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
prompt = "A photo-realistic image of a cat"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=3.5,
).images[0]
model_output.save("output.png", format="PNG")
- Downloads last month
- 33