
Objective:

In this assignment, we are tasked with building a miniature version of GPT-2 from scratch,

experimenting with different architectures and hyperparameters. As part of the project, we

used Andrej Karpathy’s llm.c as the baseline. The trained model is then evaluated on

HellaSwag, with the goal of surpassing the baseline score of 0.31 on the HellaSwag

benchmark.

Methodology:

As part of this assignment, I experimented with the following architectures. Initially, I ran the

models on Colab, where I spent $30 to perform initial tests, running up to 2,000 iterations per

architecture to gauge early performance for specific hyperparameter settings. After

identifying the model that performed comparatively better, I transferred it to the HPRC for

further training. However, I encountered several issues and bottlenecks, which I will discuss

under the challenges section. The architectures I tested are as follows:

1. SwiGLU + RMS Prop + GroupedQuery + RoPE

2. RoPE (No Positional Encoding) + Grouped Attention + GeLU

3. RoPE (No Positional Encoding) + GeLU

4. Baseline (Andrej Karpathy’s llm.c with modified hyperparameters and context

embedding size)

Standard Hyperparameters:

1. batch_size - 16

2. dtype – float16

3. weight_decay – 0.1

4. zero_stage – 1

5. learning_rate – 0.004

6. warmup_iters – 1500

7. learning_rate_decay_frac – 0.85

8. overfit_single_batch – 0

Performance Comparison for minimum runs: (All tried on Collab with 1 A100 40GB

GPU)

Click on the architecture and it redirects to .py of my GITHUB page where the GPT variant of

these architectures can be found

Architecture #Iterations

Cutoff Point

Performance

(Val)

Performance

SwiGLU+RMS+GroupedQuery+RoPE

5000

7.79 and hella

accuracy:

0.2531

Worst Performance

RoPE+GELU

5000

3.39 and hella

accuracy 0.261

Comparable to

Baseline

https://github.com/asharsha30-1996/GPT-2-Variants/blob/main/train_gpt2_RopE%2BGRoupedAttention%2BSwiGLU%2BRMS.py
https://github.com/asharsha30-1996/GPT-2-Variants/blob/main/train_gpt2_RopE%2BGELU_No_POS_Encoding.py

Rope+Grouped Query

5000

3.57 and hella

accuracy 0.2741

Slightly better than

baseline

Modified Baseline – Increased

Context Window and Embedding Size

5000 3.47 and hella

accuracy 0.2801

Even better than

baseline

Rope+Grouped_Query—Increased

Context Window and Embedding Size

5000 3.32 and hella

accuracy 0.2912

Best so

far…unfortunately

could not fully

complete it.

The sample output display logs for the above modles are shown here.

We increased the context window to 2048 and the embedding size to 1024 for both the

baseline and the RoPE + Grouped Query architectures. As a result, we observed a

significant increase in HellaSwag accuracy. However, due to resource and time constraints,

and since this idea was explored at the last minute, we were only able to run 9000

iterations. At 10000 iterations, we achieved an accuracy of 0.3142 for the Grouped Query

+ RoPE architecture and 0.3002 for the baseline model. I am excited to see how the results

unfold after reaching 19,650 iterations. Unfortunately, we lost the track of log on Collab as

the system crashed due to timeout and able to run only upto 10000 iterations.

What is submitted for final and why?

Due to the above cases, I submitted modified baseline. Honestly, would like to submit

Grouped Query and RoPE with increased context window architecture but unfortunately I ran

into issues like HF format conversion and could not complete the iteration on time, so both

the log and checkpoint did not get generated as expected.Also in modified baseline, I ran on

collab as I have very few SE on grace and faster and I plan to reserve for my course project.

I paid $53 to google collab to avail premium service of one A100 40GB GPU scheduled for

24 hours and set the iteration to 12000. Again, unfortunately the job got terminated at 11163

steps. But the model check point was saved at 10,000step and I am submitting this as .bin

and its associated log. Interestingly, we received an accuracy of 0.3068 at 10000 iterations

vs 0.3002 at 19650 of normal baseline.

Challenges Faced:

1. We could not complete the entire 19650 iterations for any model. Unfortunately for

Grouped Attention I fell in short of 1 second and job got terminated.

2. Paying to google colab is expensive. I used this technique to save my SE for my

project. But Collab GPU with same configuration as the Grace and Faster was

several times slower and resulted in constant run time crash resulting in the loss of

data.

3. Even though the grouped query with extended window size performed better than all,

due to complexities in HF format conversion and also this idea was created two days

https://github.com/asharsha30-1996/GPT-2-Variants/blob/main/train_gpt2_RopE%2BGRoupedAttention.py
https://github.com/asharsha30-1996/GPT-2-Variants/blob/main/GPT2_Modified_Baseline.py
https://github.com/asharsha30-1996/GPT-2-Variants/blob/main/GPT2_Modified_Baseline.py
https://github.com/asharsha30-1996/GPT-2-Variants/blob/main/GPT2_Modified_Baseline.py
https://github.com/asharsha30-1996/GPT-2-Variants/blob/main/GPT2_Modified_Baseline.py
https://github.com/asharsha30-1996/GPT-2-Variants/blob/main/README.md

back, I ran out of time and enough resources and could not fetch the logs as I ran on

Collab and again due to run time crash lost all log information.

Total Budget Spent to Collab:

$80.64

Final Results:

1. Modified Baseline with increased context window and embedding size showed

accuracy around 0.3062 at 10000 runs vs baseline’s 0.3002 at 19560

2. Grouped Query+RoPE with increased context window and embedding size showed

accuracy around 0.3142 at 10000 runs vs baseline’s 0.3002 at 19560

3. Grouped Query+RoPE normal showed accuracy of around 0.3089 at 19560 runs vs

0.3002 at 19560

Final Notes:

For plots and further information about the architecture and its details, all information are

properly maintained in my github (Please look into readme for plots and refer to plot the

results.ipynb)

Overall it was a great learning experience and I really loved the way of operating with

different architectures!

https://github.com/asharsha30-1996/GPT-2-Variants/blob/main/GPT2_Modified_Baseline.py

