asigalov61 commited on
Commit
32d8c52
·
verified ·
1 Parent(s): 45ed010

Upload Orpheus_Auto_Continuations_Generator.ipynb

Browse files
inference_code/Orpheus_Auto_Continuations_Generator.ipynb CHANGED
@@ -344,6 +344,7 @@
344
  "temperature = 1.0\n",
345
  "top_p_value = 0.96\n",
346
  "num_mem_tokens = 7168 # up to 12 chunks\n",
 
347
  "\n",
348
  "# Advanced options\n",
349
  "max_tok_rep_ratio = 0.95\n",
@@ -377,9 +378,9 @@
377
  " \n",
378
  " inp = torch.LongTensor(y).cuda()\n",
379
  " \n",
380
- " embs = get_embeddings(inp)\n",
381
  " \n",
382
- " scores = cosine_similarity(embeddings, embs).max(axis=0)\n",
383
  "\n",
384
  " scores = [o for o in scores if o != max(scores)]\n",
385
  "\n",
@@ -484,9 +485,9 @@
484
  " \n",
485
  " inp = torch.LongTensor([song]).cuda()\n",
486
  " \n",
487
- " embs = get_embeddings(inp)\n",
488
  " \n",
489
- " start_score = cosine_similarity(embeddings, embs).max(axis=0)[0]\n",
490
  "\n",
491
  " b_size = batch_size\n",
492
  " stop = False\n",
@@ -529,8 +530,13 @@
529
  " inp = torch.LongTensor(output).cuda()\n",
530
  " \n",
531
  " embs = get_embeddings(inp)\n",
532
- " \n",
533
- " scores = cosine_similarity(embeddings, embs).max(axis=0)\n",
 
 
 
 
 
534
  " output_scores.extend(scores)\n",
535
  " \n",
536
  " scores = [o for o in output_scores if o != max(output_scores)]\n",
 
344
  "temperature = 1.0\n",
345
  "top_p_value = 0.96\n",
346
  "num_mem_tokens = 7168 # up to 12 chunks\n",
347
+ "use_prime_embeddings = False\n",
348
  "\n",
349
  "# Advanced options\n",
350
  "max_tok_rep_ratio = 0.95\n",
 
378
  " \n",
379
  " inp = torch.LongTensor(y).cuda()\n",
380
  " \n",
381
+ " prime_embs = get_embeddings(inp)\n",
382
  " \n",
383
+ " scores = cosine_similarity(embeddings, prime_embs).max(axis=0)\n",
384
  "\n",
385
  " scores = [o for o in scores if o != max(scores)]\n",
386
  "\n",
 
485
  " \n",
486
  " inp = torch.LongTensor([song]).cuda()\n",
487
  " \n",
488
+ " prime_embs = get_embeddings(inp)\n",
489
  " \n",
490
+ " start_score = cosine_similarity(embeddings, prime_embs).max(axis=0)[0]\n",
491
  "\n",
492
  " b_size = batch_size\n",
493
  " stop = False\n",
 
530
  " inp = torch.LongTensor(output).cuda()\n",
531
  " \n",
532
  " embs = get_embeddings(inp)\n",
533
+ "\n",
534
+ " if use_prime_embeddings:\n",
535
+ " scores = cosine_similarity(prime_embs, embs).max(axis=0) \n",
536
+ "\n",
537
+ " else:\n",
538
+ " scores = cosine_similarity(embeddings, embs).max(axis=0)\n",
539
+ " \n",
540
  " output_scores.extend(scores)\n",
541
  " \n",
542
  " scores = [o for o in output_scores if o != max(output_scores)]\n",