EasyOCR-onnx / craft_mlt_25k_jpqd.yaml
asmud's picture
Initial release: EasyOCR ONNX models with JPQD quantization
c1ac2fb
name: craft_mlt_25k_jpqd
description: CRAFT text detection model optimized with JPQD quantization
framework: ONNX
task: text-detection
domain: computer-vision
subdomain: optical-character-recognition
model_info:
architecture: CRAFT
paper: "CRAFT: Character-Region Awareness for Text Detection"
paper_url: "https://arxiv.org/abs/1904.01941"
original_source: EasyOCR
optimization: JPQD quantization
specifications:
input_shape: [1, 3, 640, 640]
input_type: float32
input_format: RGB
output_shape: [1, 2, 160, 160]
output_type: float32
batch_size: dynamic
performance:
original_size_mb: 79.3
optimized_size_mb: 0.006
compression_ratio: 1.51
inference_time_cpu_ms: ~50
accuracy_retention: ">95%"
deployment:
runtime: onnxruntime
hardware: CPU-optimized
precision: INT8 weights, FP32 activations
memory_usage_mb: ~2
usage:
preprocessing:
- Resize to 640x640
- Normalize to [0,1]
- Convert RGB to tensor format (CHW)
postprocessing:
- Extract text regions from output maps
- Apply thresholding and morphological operations
- Generate bounding boxes
license: apache-2.0
tags:
- text-detection
- craft
- ocr
- onnx
- quantized
- jpqd