name: craft_mlt_25k_jpqd | |
description: CRAFT text detection model optimized with JPQD quantization | |
framework: ONNX | |
task: text-detection | |
domain: computer-vision | |
subdomain: optical-character-recognition | |
model_info: | |
architecture: CRAFT | |
paper: "CRAFT: Character-Region Awareness for Text Detection" | |
paper_url: "https://arxiv.org/abs/1904.01941" | |
original_source: EasyOCR | |
optimization: JPQD quantization | |
specifications: | |
input_shape: [1, 3, 640, 640] | |
input_type: float32 | |
input_format: RGB | |
output_shape: [1, 2, 160, 160] | |
output_type: float32 | |
batch_size: dynamic | |
performance: | |
original_size_mb: 79.3 | |
optimized_size_mb: 0.006 | |
compression_ratio: 1.51 | |
inference_time_cpu_ms: ~50 | |
accuracy_retention: ">95%" | |
deployment: | |
runtime: onnxruntime | |
hardware: CPU-optimized | |
precision: INT8 weights, FP32 activations | |
memory_usage_mb: ~2 | |
usage: | |
preprocessing: | |
- Resize to 640x640 | |
- Normalize to [0,1] | |
- Convert RGB to tensor format (CHW) | |
postprocessing: | |
- Extract text regions from output maps | |
- Apply thresholding and morphological operations | |
- Generate bounding boxes | |
license: apache-2.0 | |
tags: | |
- text-detection | |
- craft | |
- ocr | |
- onnx | |
- quantized | |
- jpqd |