--- library_name: transformers license: mit base_model: ayameRushia/whisper-v3-turbo-id tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-v3-turbo-id results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: id split: test args: id metrics: - name: Wer type: wer value: 9.17372101582628 --- # whisper-v3-turbo-id This model is a fine-tuned version of [ayameRushia/whisper-v3-turbo-id](https://huggingface.co/ayameRushia/whisper-v3-turbo-id) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1760 - Wer: 9.1737 ## Model description Fine tuned from openai/whisper-v3-turbo ## Intended uses & limitations This model only trained using common voice version 17 ## Training procedure Preprocess data ``` import re chars_to_ignore_regex = '[\,\?\.\!\;\:\"\”\’\'\“\(\)\[\\\\&/!\‘]' # delete following chars chars_to_space_regex = '[\–\—\-]' # replace the following chars into space def remove_special_characters(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " batch["sentence"] = re.sub(chars_to_space_regex, ' ', batch["sentence"]) + " " # replacing some character batch["sentence"] = batch["sentence"].replace("é", "e").replace("á", "a").replace("ł", "l").replace("ń", "n").replace("ō", "o").strip() return batch common_voice = common_voice.map(remove_special_characters) ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.0706 | 1.9231 | 1000 | 0.2361 | 18.0484 | | 0.0099 | 3.8462 | 2000 | 0.1875 | 10.3607 | | 0.001 | 5.7692 | 3000 | 0.1760 | 9.1737 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1