Add model card
Browse files
README.md
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- text-generation
|
6 |
+
- question-answering
|
7 |
+
- mcqa
|
8 |
+
- merged
|
9 |
+
- sft
|
10 |
+
- lora
|
11 |
+
base_model: AnnaelleMyriam/SFT_M3_model
|
12 |
+
---
|
13 |
+
|
14 |
+
# MNLP M3 MCQA Merged Model
|
15 |
+
|
16 |
+
This model is a merged version of:
|
17 |
+
- **Base SFT Model**: `AnnaelleMyriam/SFT_M3_model`
|
18 |
+
- **LoRA Adapter**: `aymanbakiri/MNLP_M3_mcqa_model_test`
|
19 |
+
|
20 |
+
## Model Description
|
21 |
+
|
22 |
+
This is a specialized model for Multiple Choice Question Answering (MCQA) tasks, created by:
|
23 |
+
1. Starting with the SFT model `AnnaelleMyriam/SFT_M3_model`
|
24 |
+
2. Fine-tuning with LoRA adapters on MCQA data
|
25 |
+
3. Merging the LoRA weights back into the base model
|
26 |
+
|
27 |
+
## Usage
|
28 |
+
|
29 |
+
```python
|
30 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
31 |
+
|
32 |
+
model = AutoModelForCausalLM.from_pretrained("aymanbakiri/MNLP_M3_mcqa_merged_model_test")
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained("aymanbakiri/MNLP_M3_mcqa_merged_model_test")
|
34 |
+
|
35 |
+
# Example usage for MCQA
|
36 |
+
prompt = """Question: What is the capital of France?
|
37 |
+
Options: (A) London (B) Berlin (C) Paris (D) Madrid
|
38 |
+
Answer:"""
|
39 |
+
|
40 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
41 |
+
outputs = model.generate(**inputs, max_new_tokens=5)
|
42 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
+
print(answer)
|
44 |
+
```
|
45 |
+
|
46 |
+
## Training Details
|
47 |
+
|
48 |
+
- Base Model: SFT model fine-tuned for instruction following
|
49 |
+
- LoRA Configuration: r=16, alpha=32, dropout=0.1
|
50 |
+
- Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj, lm_head
|
51 |
+
- Training Data: MNLP M2 MCQA Dataset
|
52 |
+
|
53 |
+
## Performance
|
54 |
+
|
55 |
+
This merged model should provide better performance than the original LoRA adapter while being easier to deploy and use.
|