yodas-ja000-WADA-SNR-filtering / audio_quality_analysis.py
ayousanz's picture
feat: analysis yodas ja000 for WADA SNR
c113ea5
from datasets import load_dataset
import librosa
import IPython.display as ipd
from IPython.display import Audio, display
import random
from concurrent.futures import ProcessPoolExecutor
import numpy as np
import json
ds0 = load_dataset('espnet/yodas', 'ja000')
print("finished loading ja000")
def wada_snr(wav):
# Direct blind estimation of the SNR of a speech signal.
#
# Paper on WADA SNR:
# http://www.cs.cmu.edu/~robust/Papers/KimSternIS08.pdf
#
# This function was adapted from this matlab code:
# https://labrosa.ee.columbia.edu/projects/snreval/#9
# init
eps = 1e-10
# next 2 lines define a fancy curve derived from a gamma distribution -- see paper
db_vals = np.arange(-20, 101)
g_vals = np.array([0.40974774, 0.40986926, 0.40998566, 0.40969089, 0.40986186, 0.40999006, 0.41027138, 0.41052627, 0.41101024, 0.41143264, 0.41231718, 0.41337272, 0.41526426, 0.4178192 , 0.42077252, 0.42452799, 0.42918886, 0.43510373, 0.44234195, 0.45161485, 0.46221153, 0.47491647, 0.48883809, 0.50509236, 0.52353709, 0.54372088, 0.56532427, 0.58847532, 0.61346212, 0.63954496, 0.66750818, 0.69583724, 0.72454762, 0.75414799, 0.78323148, 0.81240985, 0.84219775, 0.87166406, 0.90030504, 0.92880418, 0.95655449, 0.9835349 , 1.01047155, 1.0362095 , 1.06136425, 1.08579312, 1.1094819 , 1.13277995, 1.15472826, 1.17627308, 1.19703503, 1.21671694, 1.23535898, 1.25364313, 1.27103891, 1.28718029, 1.30302865, 1.31839527, 1.33294817, 1.34700935, 1.3605727 , 1.37345513, 1.38577122, 1.39733504, 1.40856397, 1.41959619, 1.42983624, 1.43958467, 1.44902176, 1.45804831, 1.46669568, 1.47486938, 1.48269965, 1.49034339, 1.49748214, 1.50435106, 1.51076426, 1.51698915, 1.5229097 , 1.528578 , 1.53389835, 1.5391211 , 1.5439065 , 1.54858517, 1.55310776, 1.55744391, 1.56164927, 1.56566348, 1.56938671, 1.57307767, 1.57654764, 1.57980083, 1.58304129, 1.58602496, 1.58880681, 1.59162477, 1.5941969 , 1.59693155, 1.599446 , 1.60185011, 1.60408668, 1.60627134, 1.60826199, 1.61004547, 1.61192472, 1.61369656, 1.61534074, 1.61688905, 1.61838916, 1.61985374, 1.62135878, 1.62268119, 1.62390423, 1.62513143, 1.62632463, 1.6274027 , 1.62842767, 1.62945532, 1.6303307 , 1.63128026, 1.63204102])
# peak normalize, get magnitude, clip lower bound
wav = np.array(wav)
max_val = np.abs(wav).max()
if max_val == 0:
max_val = eps
wav = wav / max_val
abs_wav = np.abs(wav)
abs_wav[abs_wav < eps] = eps
# calcuate statistics
# E[|z|]
v1 = max(eps, abs_wav.mean())
# E[log|z|]
v2 = np.log(abs_wav).mean()
# log(E[|z|]) - E[log(|z|)]
v3 = np.log(v1) - v2
# table interpolation
wav_snr_idx = None
if any(g_vals < v3):
wav_snr_idx = np.where(g_vals < v3)[0].max()
# handle edge cases or interpolate
if wav_snr_idx is None:
wav_snr = db_vals[0]
elif wav_snr_idx == len(db_vals) - 1:
wav_snr = db_vals[-1]
else:
wav_snr = db_vals[wav_snr_idx] + \
(v3-g_vals[wav_snr_idx]) / (g_vals[wav_snr_idx+1] - \
g_vals[wav_snr_idx]) * (db_vals[wav_snr_idx+1] - db_vals[wav_snr_idx])
# Calculate SNR
dEng = sum(wav**2)
dFactor = 10**(wav_snr / 10)
dNoiseEng = dEng / (1 + dFactor) # Noise energy
dSigEng = dEng * dFactor / (1 + dFactor) # Signal energy
snr = 10 * np.log10(dSigEng / dNoiseEng)
return snr
def preprocess_audio(data):
# �?ータが整数型�?�場合、浮動小数点型に変換
if data.dtype == np.int16:
data = data.astype(np.float32) / np.iinfo(np.int16).max
elif data.dtype == np.int32:
data = data.astype(np.float32) / np.iinfo(np.int32).max
# ス�?レオをモノラルに変換?���?要があれば?�?
if len(data.shape) == 2:
data = data.mean(axis=1)
return data
# 音声データの前処理とSNR計算を行う関数
def process_audio_data(item):
# 音声データの前処理
audio_data = item['audio']['array']
# 音声データが空でないことを確認
if len(audio_data) == 0:
return None
preprocessed_data = preprocess_audio(audio_data)
# WADA-SNRを計算
snr = wada_snr(preprocessed_data)
# データからidを取得
uuid = item['utt_id']
transcription = item['text']
return {
"ファイル名": uuid,
"SNR値": snr,
"トランスクリプション": transcription
}
import os
if __name__ == '__main__':
ds = load_dataset('espnet/yodas', 'ja000', trust_remote_code=True)
print("データ数: ", ds['train'].dataset_size)
# CPUのコア数を取得
cpu_count = os.cpu_count()
# 並列�?��?で関数を実�?
with ProcessPoolExecutor(max_workers=cpu_count) as executor:
results = list(executor.map(process_audio_data, ds['train']))
# Noneを除去
results = [result for result in results if result is not None]
# 結果をJSONファイルに保存
with open('audio_analysis_results.json', 'w') as f:
json.dump(results, f, ensure_ascii=False, indent=4)
print("JSONファイルが保存されました")