extra2
Browse files- checkpoint-6341/generation_config.json +7 -0
- checkpoint-6341/latest +1 -0
- checkpoint-6341/model.safetensors.index.json +298 -0
- checkpoint-6341/special_tokens_map.json +24 -0
- checkpoint-6341/tokenizer.model +3 -0
- checkpoint-6341/tokenizer_config.json +43 -0
- checkpoint-6341/trainer_state.json +1758 -0
- checkpoint-6341/training_args.bin +3 -0
- checkpoint-6341/zero_to_fp32.py +604 -0
checkpoint-6341/generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.42.3"
|
| 7 |
+
}
|
checkpoint-6341/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step6341
|
checkpoint-6341/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 5403120640
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00002-of-00002.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 296 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
| 297 |
+
}
|
| 298 |
+
}
|
checkpoint-6341/special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "</s>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
checkpoint-6341/tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
checkpoint-6341/tokenizer_config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": true,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"bos_token": "<s>",
|
| 32 |
+
"clean_up_tokenization_spaces": false,
|
| 33 |
+
"eos_token": "</s>",
|
| 34 |
+
"legacy": false,
|
| 35 |
+
"model_max_length": 2048,
|
| 36 |
+
"pad_token": "</s>",
|
| 37 |
+
"padding_side": "right",
|
| 38 |
+
"sp_model_kwargs": {},
|
| 39 |
+
"spaces_between_special_tokens": false,
|
| 40 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 41 |
+
"unk_token": "<unk>",
|
| 42 |
+
"use_default_system_prompt": false
|
| 43 |
+
}
|
checkpoint-6341/trainer_state.json
ADDED
|
@@ -0,0 +1,1758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 1.0,
|
| 5 |
+
"eval_steps": 200,
|
| 6 |
+
"global_step": 6341,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.004731114966093676,
|
| 13 |
+
"grad_norm": 0.9585382342338562,
|
| 14 |
+
"learning_rate": 7.235790156711095e-05,
|
| 15 |
+
"loss": 1.19,
|
| 16 |
+
"step": 30
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.009462229932187352,
|
| 20 |
+
"grad_norm": 0.9438452124595642,
|
| 21 |
+
"learning_rate": 8.817139967814685e-05,
|
| 22 |
+
"loss": 1.0589,
|
| 23 |
+
"step": 60
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.014193344898281028,
|
| 27 |
+
"grad_norm": 0.9442492723464966,
|
| 28 |
+
"learning_rate": 9.722413360750843e-05,
|
| 29 |
+
"loss": 1.0764,
|
| 30 |
+
"step": 90
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.018924459864374705,
|
| 34 |
+
"grad_norm": 0.8840267658233643,
|
| 35 |
+
"learning_rate": 9.994621104255655e-05,
|
| 36 |
+
"loss": 1.0847,
|
| 37 |
+
"step": 120
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.02365557483046838,
|
| 41 |
+
"grad_norm": 0.8207218050956726,
|
| 42 |
+
"learning_rate": 9.985445340927068e-05,
|
| 43 |
+
"loss": 1.0912,
|
| 44 |
+
"step": 150
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.028386689796562056,
|
| 48 |
+
"grad_norm": 0.8883314728736877,
|
| 49 |
+
"learning_rate": 9.975953171966461e-05,
|
| 50 |
+
"loss": 1.0608,
|
| 51 |
+
"step": 180
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.03154076644062451,
|
| 55 |
+
"eval_loss": 1.2097724676132202,
|
| 56 |
+
"eval_runtime": 3.756,
|
| 57 |
+
"eval_samples_per_second": 26.89,
|
| 58 |
+
"eval_steps_per_second": 3.461,
|
| 59 |
+
"step": 200
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"epoch": 0.03311780476265573,
|
| 63 |
+
"grad_norm": 0.7577874064445496,
|
| 64 |
+
"learning_rate": 9.966461003005853e-05,
|
| 65 |
+
"loss": 1.0802,
|
| 66 |
+
"step": 210
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"epoch": 0.03784891972874941,
|
| 70 |
+
"grad_norm": 1.4911932945251465,
|
| 71 |
+
"learning_rate": 9.956968834045246e-05,
|
| 72 |
+
"loss": 1.0397,
|
| 73 |
+
"step": 240
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"epoch": 0.04258003469484308,
|
| 77 |
+
"grad_norm": 0.8236317038536072,
|
| 78 |
+
"learning_rate": 9.947476665084638e-05,
|
| 79 |
+
"loss": 1.0575,
|
| 80 |
+
"step": 270
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"epoch": 0.04731114966093676,
|
| 84 |
+
"grad_norm": 0.7883521318435669,
|
| 85 |
+
"learning_rate": 9.937984496124031e-05,
|
| 86 |
+
"loss": 1.0369,
|
| 87 |
+
"step": 300
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.05204226462703044,
|
| 91 |
+
"grad_norm": 0.7798565626144409,
|
| 92 |
+
"learning_rate": 9.928492327163424e-05,
|
| 93 |
+
"loss": 1.0354,
|
| 94 |
+
"step": 330
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"epoch": 0.05677337959312411,
|
| 98 |
+
"grad_norm": 0.7784315943717957,
|
| 99 |
+
"learning_rate": 9.919000158202817e-05,
|
| 100 |
+
"loss": 1.0341,
|
| 101 |
+
"step": 360
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"epoch": 0.06150449455921779,
|
| 105 |
+
"grad_norm": 0.836300790309906,
|
| 106 |
+
"learning_rate": 9.909507989242209e-05,
|
| 107 |
+
"loss": 1.0272,
|
| 108 |
+
"step": 390
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"epoch": 0.06308153288124901,
|
| 112 |
+
"eval_loss": 1.1889104843139648,
|
| 113 |
+
"eval_runtime": 3.7553,
|
| 114 |
+
"eval_samples_per_second": 26.895,
|
| 115 |
+
"eval_steps_per_second": 3.462,
|
| 116 |
+
"step": 400
|
| 117 |
+
},
|
| 118 |
+
{
|
| 119 |
+
"epoch": 0.06623560952531146,
|
| 120 |
+
"grad_norm": 0.7245925664901733,
|
| 121 |
+
"learning_rate": 9.900015820281602e-05,
|
| 122 |
+
"loss": 1.0256,
|
| 123 |
+
"step": 420
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"epoch": 0.07096672449140515,
|
| 127 |
+
"grad_norm": 0.8321049213409424,
|
| 128 |
+
"learning_rate": 9.890523651320994e-05,
|
| 129 |
+
"loss": 1.0332,
|
| 130 |
+
"step": 450
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"epoch": 0.07569783945749882,
|
| 134 |
+
"grad_norm": 0.7657173275947571,
|
| 135 |
+
"learning_rate": 9.881031482360387e-05,
|
| 136 |
+
"loss": 1.0221,
|
| 137 |
+
"step": 480
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"epoch": 0.08042895442359249,
|
| 141 |
+
"grad_norm": 0.7464463114738464,
|
| 142 |
+
"learning_rate": 9.871539313399779e-05,
|
| 143 |
+
"loss": 0.9911,
|
| 144 |
+
"step": 510
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"epoch": 0.08516006938968616,
|
| 148 |
+
"grad_norm": 0.7290617227554321,
|
| 149 |
+
"learning_rate": 9.862047144439172e-05,
|
| 150 |
+
"loss": 1.0258,
|
| 151 |
+
"step": 540
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"epoch": 0.08989118435577985,
|
| 155 |
+
"grad_norm": 0.7311350703239441,
|
| 156 |
+
"learning_rate": 9.852554975478564e-05,
|
| 157 |
+
"loss": 1.0165,
|
| 158 |
+
"step": 570
|
| 159 |
+
},
|
| 160 |
+
{
|
| 161 |
+
"epoch": 0.09462229932187352,
|
| 162 |
+
"grad_norm": 0.8087915182113647,
|
| 163 |
+
"learning_rate": 9.843062806517957e-05,
|
| 164 |
+
"loss": 0.9716,
|
| 165 |
+
"step": 600
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"epoch": 0.09462229932187352,
|
| 169 |
+
"eval_loss": 1.1471492052078247,
|
| 170 |
+
"eval_runtime": 3.7536,
|
| 171 |
+
"eval_samples_per_second": 26.907,
|
| 172 |
+
"eval_steps_per_second": 3.463,
|
| 173 |
+
"step": 600
|
| 174 |
+
},
|
| 175 |
+
{
|
| 176 |
+
"epoch": 0.09935341428796719,
|
| 177 |
+
"grad_norm": 0.7442970275878906,
|
| 178 |
+
"learning_rate": 9.833570637557348e-05,
|
| 179 |
+
"loss": 0.9747,
|
| 180 |
+
"step": 630
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"epoch": 0.10408452925406088,
|
| 184 |
+
"grad_norm": 0.9510965347290039,
|
| 185 |
+
"learning_rate": 9.824078468596742e-05,
|
| 186 |
+
"loss": 0.9582,
|
| 187 |
+
"step": 660
|
| 188 |
+
},
|
| 189 |
+
{
|
| 190 |
+
"epoch": 0.10881564422015455,
|
| 191 |
+
"grad_norm": 0.6995567083358765,
|
| 192 |
+
"learning_rate": 9.814586299636133e-05,
|
| 193 |
+
"loss": 1.0118,
|
| 194 |
+
"step": 690
|
| 195 |
+
},
|
| 196 |
+
{
|
| 197 |
+
"epoch": 0.11354675918624822,
|
| 198 |
+
"grad_norm": 0.9319436550140381,
|
| 199 |
+
"learning_rate": 9.805094130675526e-05,
|
| 200 |
+
"loss": 0.9815,
|
| 201 |
+
"step": 720
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"epoch": 0.11827787415234191,
|
| 205 |
+
"grad_norm": 0.7033783793449402,
|
| 206 |
+
"learning_rate": 9.795601961714918e-05,
|
| 207 |
+
"loss": 0.9738,
|
| 208 |
+
"step": 750
|
| 209 |
+
},
|
| 210 |
+
{
|
| 211 |
+
"epoch": 0.12300898911843558,
|
| 212 |
+
"grad_norm": 0.6606217622756958,
|
| 213 |
+
"learning_rate": 9.786109792754311e-05,
|
| 214 |
+
"loss": 0.961,
|
| 215 |
+
"step": 780
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"epoch": 0.12616306576249803,
|
| 219 |
+
"eval_loss": 1.125948190689087,
|
| 220 |
+
"eval_runtime": 3.7557,
|
| 221 |
+
"eval_samples_per_second": 26.892,
|
| 222 |
+
"eval_steps_per_second": 3.461,
|
| 223 |
+
"step": 800
|
| 224 |
+
},
|
| 225 |
+
{
|
| 226 |
+
"epoch": 0.12774010408452927,
|
| 227 |
+
"grad_norm": 0.9087960124015808,
|
| 228 |
+
"learning_rate": 9.776617623793703e-05,
|
| 229 |
+
"loss": 0.9734,
|
| 230 |
+
"step": 810
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"epoch": 0.13247121905062292,
|
| 234 |
+
"grad_norm": 0.7387025952339172,
|
| 235 |
+
"learning_rate": 9.767125454833097e-05,
|
| 236 |
+
"loss": 0.9605,
|
| 237 |
+
"step": 840
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"epoch": 0.1372023340167166,
|
| 241 |
+
"grad_norm": 0.7939543724060059,
|
| 242 |
+
"learning_rate": 9.757633285872489e-05,
|
| 243 |
+
"loss": 0.952,
|
| 244 |
+
"step": 870
|
| 245 |
+
},
|
| 246 |
+
{
|
| 247 |
+
"epoch": 0.1419334489828103,
|
| 248 |
+
"grad_norm": 1.1417864561080933,
|
| 249 |
+
"learning_rate": 9.748141116911882e-05,
|
| 250 |
+
"loss": 0.9113,
|
| 251 |
+
"step": 900
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"epoch": 0.14666456394890395,
|
| 255 |
+
"grad_norm": 0.7591778635978699,
|
| 256 |
+
"learning_rate": 9.738648947951274e-05,
|
| 257 |
+
"loss": 0.9565,
|
| 258 |
+
"step": 930
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"epoch": 0.15139567891499764,
|
| 262 |
+
"grad_norm": 0.759545087814331,
|
| 263 |
+
"learning_rate": 9.729156778990667e-05,
|
| 264 |
+
"loss": 0.9401,
|
| 265 |
+
"step": 960
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"epoch": 0.1561267938810913,
|
| 269 |
+
"grad_norm": 0.700552761554718,
|
| 270 |
+
"learning_rate": 9.719664610030059e-05,
|
| 271 |
+
"loss": 0.9447,
|
| 272 |
+
"step": 990
|
| 273 |
+
},
|
| 274 |
+
{
|
| 275 |
+
"epoch": 0.15770383220312253,
|
| 276 |
+
"eval_loss": 1.0677810907363892,
|
| 277 |
+
"eval_runtime": 3.7551,
|
| 278 |
+
"eval_samples_per_second": 26.897,
|
| 279 |
+
"eval_steps_per_second": 3.462,
|
| 280 |
+
"step": 1000
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"epoch": 0.16085790884718498,
|
| 284 |
+
"grad_norm": 0.6673519015312195,
|
| 285 |
+
"learning_rate": 9.710172441069452e-05,
|
| 286 |
+
"loss": 0.8919,
|
| 287 |
+
"step": 1020
|
| 288 |
+
},
|
| 289 |
+
{
|
| 290 |
+
"epoch": 0.16558902381327867,
|
| 291 |
+
"grad_norm": 0.8046931028366089,
|
| 292 |
+
"learning_rate": 9.700680272108844e-05,
|
| 293 |
+
"loss": 0.9136,
|
| 294 |
+
"step": 1050
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"epoch": 0.17032013877937233,
|
| 298 |
+
"grad_norm": 0.7277413606643677,
|
| 299 |
+
"learning_rate": 9.691188103148237e-05,
|
| 300 |
+
"loss": 0.9001,
|
| 301 |
+
"step": 1080
|
| 302 |
+
},
|
| 303 |
+
{
|
| 304 |
+
"epoch": 0.175051253745466,
|
| 305 |
+
"grad_norm": 0.661359429359436,
|
| 306 |
+
"learning_rate": 9.681695934187629e-05,
|
| 307 |
+
"loss": 0.9119,
|
| 308 |
+
"step": 1110
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"epoch": 0.1797823687115597,
|
| 312 |
+
"grad_norm": 0.7349006533622742,
|
| 313 |
+
"learning_rate": 9.672203765227022e-05,
|
| 314 |
+
"loss": 0.8825,
|
| 315 |
+
"step": 1140
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"epoch": 0.18451348367765336,
|
| 319 |
+
"grad_norm": 0.7114729285240173,
|
| 320 |
+
"learning_rate": 9.662711596266414e-05,
|
| 321 |
+
"loss": 0.8872,
|
| 322 |
+
"step": 1170
|
| 323 |
+
},
|
| 324 |
+
{
|
| 325 |
+
"epoch": 0.18924459864374704,
|
| 326 |
+
"grad_norm": 0.6496574282646179,
|
| 327 |
+
"learning_rate": 9.653219427305807e-05,
|
| 328 |
+
"loss": 0.8809,
|
| 329 |
+
"step": 1200
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
"epoch": 0.18924459864374704,
|
| 333 |
+
"eval_loss": 1.0253973007202148,
|
| 334 |
+
"eval_runtime": 3.7532,
|
| 335 |
+
"eval_samples_per_second": 26.91,
|
| 336 |
+
"eval_steps_per_second": 3.464,
|
| 337 |
+
"step": 1200
|
| 338 |
+
},
|
| 339 |
+
{
|
| 340 |
+
"epoch": 0.19397571360984073,
|
| 341 |
+
"grad_norm": 0.6576619744300842,
|
| 342 |
+
"learning_rate": 9.643727258345198e-05,
|
| 343 |
+
"loss": 0.876,
|
| 344 |
+
"step": 1230
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
"epoch": 0.19870682857593439,
|
| 348 |
+
"grad_norm": 0.666749119758606,
|
| 349 |
+
"learning_rate": 9.634235089384591e-05,
|
| 350 |
+
"loss": 0.8877,
|
| 351 |
+
"step": 1260
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"epoch": 0.20343794354202807,
|
| 355 |
+
"grad_norm": 0.7769750952720642,
|
| 356 |
+
"learning_rate": 9.624742920423983e-05,
|
| 357 |
+
"loss": 0.8894,
|
| 358 |
+
"step": 1290
|
| 359 |
+
},
|
| 360 |
+
{
|
| 361 |
+
"epoch": 0.20816905850812176,
|
| 362 |
+
"grad_norm": 0.6562801599502563,
|
| 363 |
+
"learning_rate": 9.615250751463376e-05,
|
| 364 |
+
"loss": 0.8912,
|
| 365 |
+
"step": 1320
|
| 366 |
+
},
|
| 367 |
+
{
|
| 368 |
+
"epoch": 0.21290017347421542,
|
| 369 |
+
"grad_norm": 0.6531364917755127,
|
| 370 |
+
"learning_rate": 9.605758582502768e-05,
|
| 371 |
+
"loss": 0.875,
|
| 372 |
+
"step": 1350
|
| 373 |
+
},
|
| 374 |
+
{
|
| 375 |
+
"epoch": 0.2176312884403091,
|
| 376 |
+
"grad_norm": 0.6414660811424255,
|
| 377 |
+
"learning_rate": 9.596266413542163e-05,
|
| 378 |
+
"loss": 0.8721,
|
| 379 |
+
"step": 1380
|
| 380 |
+
},
|
| 381 |
+
{
|
| 382 |
+
"epoch": 0.22078536508437155,
|
| 383 |
+
"eval_loss": 1.0128834247589111,
|
| 384 |
+
"eval_runtime": 3.7539,
|
| 385 |
+
"eval_samples_per_second": 26.906,
|
| 386 |
+
"eval_steps_per_second": 3.463,
|
| 387 |
+
"step": 1400
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.2223624034064028,
|
| 391 |
+
"grad_norm": 0.8413099646568298,
|
| 392 |
+
"learning_rate": 9.586774244581554e-05,
|
| 393 |
+
"loss": 0.8807,
|
| 394 |
+
"step": 1410
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.22709351837249644,
|
| 398 |
+
"grad_norm": 0.6748294830322266,
|
| 399 |
+
"learning_rate": 9.577282075620947e-05,
|
| 400 |
+
"loss": 0.8245,
|
| 401 |
+
"step": 1440
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.23182463333859013,
|
| 405 |
+
"grad_norm": 0.7067525386810303,
|
| 406 |
+
"learning_rate": 9.567789906660339e-05,
|
| 407 |
+
"loss": 0.8767,
|
| 408 |
+
"step": 1470
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.23655574830468382,
|
| 412 |
+
"grad_norm": 1.074791431427002,
|
| 413 |
+
"learning_rate": 9.558297737699732e-05,
|
| 414 |
+
"loss": 0.8856,
|
| 415 |
+
"step": 1500
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.24128686327077747,
|
| 419 |
+
"grad_norm": 0.7461240887641907,
|
| 420 |
+
"learning_rate": 9.548805568739124e-05,
|
| 421 |
+
"loss": 0.8759,
|
| 422 |
+
"step": 1530
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.24601797823687116,
|
| 426 |
+
"grad_norm": 0.6231616139411926,
|
| 427 |
+
"learning_rate": 9.539313399778517e-05,
|
| 428 |
+
"loss": 0.837,
|
| 429 |
+
"step": 1560
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.25074909320296485,
|
| 433 |
+
"grad_norm": 0.7053641080856323,
|
| 434 |
+
"learning_rate": 9.529821230817909e-05,
|
| 435 |
+
"loss": 0.8763,
|
| 436 |
+
"step": 1590
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.25232613152499606,
|
| 440 |
+
"eval_loss": 0.9505324959754944,
|
| 441 |
+
"eval_runtime": 3.7563,
|
| 442 |
+
"eval_samples_per_second": 26.888,
|
| 443 |
+
"eval_steps_per_second": 3.461,
|
| 444 |
+
"step": 1600
|
| 445 |
+
},
|
| 446 |
+
{
|
| 447 |
+
"epoch": 0.25548020816905853,
|
| 448 |
+
"grad_norm": 0.6484207510948181,
|
| 449 |
+
"learning_rate": 9.520329061857302e-05,
|
| 450 |
+
"loss": 0.8787,
|
| 451 |
+
"step": 1620
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"epoch": 0.26021132313515216,
|
| 455 |
+
"grad_norm": 0.5929827094078064,
|
| 456 |
+
"learning_rate": 9.510836892896694e-05,
|
| 457 |
+
"loss": 0.844,
|
| 458 |
+
"step": 1650
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"epoch": 0.26494243810124585,
|
| 462 |
+
"grad_norm": 0.6840829849243164,
|
| 463 |
+
"learning_rate": 9.501344723936087e-05,
|
| 464 |
+
"loss": 0.8492,
|
| 465 |
+
"step": 1680
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.26967355306733953,
|
| 469 |
+
"grad_norm": 0.7365448474884033,
|
| 470 |
+
"learning_rate": 9.491852554975479e-05,
|
| 471 |
+
"loss": 0.8584,
|
| 472 |
+
"step": 1710
|
| 473 |
+
},
|
| 474 |
+
{
|
| 475 |
+
"epoch": 0.2744046680334332,
|
| 476 |
+
"grad_norm": 0.6528182029724121,
|
| 477 |
+
"learning_rate": 9.482360386014872e-05,
|
| 478 |
+
"loss": 0.8346,
|
| 479 |
+
"step": 1740
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 0.2791357829995269,
|
| 483 |
+
"grad_norm": 0.6200223565101624,
|
| 484 |
+
"learning_rate": 9.472868217054263e-05,
|
| 485 |
+
"loss": 0.8008,
|
| 486 |
+
"step": 1770
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 0.2838668979656206,
|
| 490 |
+
"grad_norm": 0.7503982186317444,
|
| 491 |
+
"learning_rate": 9.463376048093657e-05,
|
| 492 |
+
"loss": 0.8197,
|
| 493 |
+
"step": 1800
|
| 494 |
+
},
|
| 495 |
+
{
|
| 496 |
+
"epoch": 0.2838668979656206,
|
| 497 |
+
"eval_loss": 0.9286572933197021,
|
| 498 |
+
"eval_runtime": 3.7535,
|
| 499 |
+
"eval_samples_per_second": 26.908,
|
| 500 |
+
"eval_steps_per_second": 3.463,
|
| 501 |
+
"step": 1800
|
| 502 |
+
},
|
| 503 |
+
{
|
| 504 |
+
"epoch": 0.2885980129317142,
|
| 505 |
+
"grad_norm": 0.6671140193939209,
|
| 506 |
+
"learning_rate": 9.453883879133048e-05,
|
| 507 |
+
"loss": 0.8405,
|
| 508 |
+
"step": 1830
|
| 509 |
+
},
|
| 510 |
+
{
|
| 511 |
+
"epoch": 0.2933291278978079,
|
| 512 |
+
"grad_norm": 0.7057023048400879,
|
| 513 |
+
"learning_rate": 9.444391710172441e-05,
|
| 514 |
+
"loss": 0.7822,
|
| 515 |
+
"step": 1860
|
| 516 |
+
},
|
| 517 |
+
{
|
| 518 |
+
"epoch": 0.2980602428639016,
|
| 519 |
+
"grad_norm": 0.8120527267456055,
|
| 520 |
+
"learning_rate": 9.434899541211833e-05,
|
| 521 |
+
"loss": 0.8416,
|
| 522 |
+
"step": 1890
|
| 523 |
+
},
|
| 524 |
+
{
|
| 525 |
+
"epoch": 0.3027913578299953,
|
| 526 |
+
"grad_norm": 0.622718334197998,
|
| 527 |
+
"learning_rate": 9.425407372251228e-05,
|
| 528 |
+
"loss": 0.8174,
|
| 529 |
+
"step": 1920
|
| 530 |
+
},
|
| 531 |
+
{
|
| 532 |
+
"epoch": 0.30752247279608896,
|
| 533 |
+
"grad_norm": 0.6605896353721619,
|
| 534 |
+
"learning_rate": 9.41591520329062e-05,
|
| 535 |
+
"loss": 0.8003,
|
| 536 |
+
"step": 1950
|
| 537 |
+
},
|
| 538 |
+
{
|
| 539 |
+
"epoch": 0.3122535877621826,
|
| 540 |
+
"grad_norm": 0.7473495006561279,
|
| 541 |
+
"learning_rate": 9.406423034330012e-05,
|
| 542 |
+
"loss": 0.798,
|
| 543 |
+
"step": 1980
|
| 544 |
+
},
|
| 545 |
+
{
|
| 546 |
+
"epoch": 0.31540766440624507,
|
| 547 |
+
"eval_loss": 0.8976284861564636,
|
| 548 |
+
"eval_runtime": 3.7537,
|
| 549 |
+
"eval_samples_per_second": 26.907,
|
| 550 |
+
"eval_steps_per_second": 3.463,
|
| 551 |
+
"step": 2000
|
| 552 |
+
},
|
| 553 |
+
{
|
| 554 |
+
"epoch": 0.3169847027282763,
|
| 555 |
+
"grad_norm": 0.7177520394325256,
|
| 556 |
+
"learning_rate": 9.396930865369404e-05,
|
| 557 |
+
"loss": 0.8168,
|
| 558 |
+
"step": 2010
|
| 559 |
+
},
|
| 560 |
+
{
|
| 561 |
+
"epoch": 0.32171581769436997,
|
| 562 |
+
"grad_norm": 0.7600869536399841,
|
| 563 |
+
"learning_rate": 9.387438696408797e-05,
|
| 564 |
+
"loss": 0.7918,
|
| 565 |
+
"step": 2040
|
| 566 |
+
},
|
| 567 |
+
{
|
| 568 |
+
"epoch": 0.32644693266046365,
|
| 569 |
+
"grad_norm": 0.7001503109931946,
|
| 570 |
+
"learning_rate": 9.377946527448189e-05,
|
| 571 |
+
"loss": 0.7906,
|
| 572 |
+
"step": 2070
|
| 573 |
+
},
|
| 574 |
+
{
|
| 575 |
+
"epoch": 0.33117804762655734,
|
| 576 |
+
"grad_norm": 0.6279382705688477,
|
| 577 |
+
"learning_rate": 9.368454358487582e-05,
|
| 578 |
+
"loss": 0.7624,
|
| 579 |
+
"step": 2100
|
| 580 |
+
},
|
| 581 |
+
{
|
| 582 |
+
"epoch": 0.335909162592651,
|
| 583 |
+
"grad_norm": 0.7481889128684998,
|
| 584 |
+
"learning_rate": 9.358962189526974e-05,
|
| 585 |
+
"loss": 0.7849,
|
| 586 |
+
"step": 2130
|
| 587 |
+
},
|
| 588 |
+
{
|
| 589 |
+
"epoch": 0.34064027755874465,
|
| 590 |
+
"grad_norm": 0.6797828078269958,
|
| 591 |
+
"learning_rate": 9.349470020566367e-05,
|
| 592 |
+
"loss": 0.7899,
|
| 593 |
+
"step": 2160
|
| 594 |
+
},
|
| 595 |
+
{
|
| 596 |
+
"epoch": 0.34537139252483834,
|
| 597 |
+
"grad_norm": 0.6929941177368164,
|
| 598 |
+
"learning_rate": 9.339977851605759e-05,
|
| 599 |
+
"loss": 0.7703,
|
| 600 |
+
"step": 2190
|
| 601 |
+
},
|
| 602 |
+
{
|
| 603 |
+
"epoch": 0.3469484308468696,
|
| 604 |
+
"eval_loss": 0.8858568072319031,
|
| 605 |
+
"eval_runtime": 3.7538,
|
| 606 |
+
"eval_samples_per_second": 26.906,
|
| 607 |
+
"eval_steps_per_second": 3.463,
|
| 608 |
+
"step": 2200
|
| 609 |
+
},
|
| 610 |
+
{
|
| 611 |
+
"epoch": 0.350102507490932,
|
| 612 |
+
"grad_norm": 0.698906660079956,
|
| 613 |
+
"learning_rate": 9.330485682645152e-05,
|
| 614 |
+
"loss": 0.7724,
|
| 615 |
+
"step": 2220
|
| 616 |
+
},
|
| 617 |
+
{
|
| 618 |
+
"epoch": 0.3548336224570257,
|
| 619 |
+
"grad_norm": 0.779211163520813,
|
| 620 |
+
"learning_rate": 9.320993513684544e-05,
|
| 621 |
+
"loss": 0.7875,
|
| 622 |
+
"step": 2250
|
| 623 |
+
},
|
| 624 |
+
{
|
| 625 |
+
"epoch": 0.3595647374231194,
|
| 626 |
+
"grad_norm": 0.7313475608825684,
|
| 627 |
+
"learning_rate": 9.311817750355957e-05,
|
| 628 |
+
"loss": 0.794,
|
| 629 |
+
"step": 2280
|
| 630 |
+
},
|
| 631 |
+
{
|
| 632 |
+
"epoch": 0.3642958523892131,
|
| 633 |
+
"grad_norm": 0.6143506169319153,
|
| 634 |
+
"learning_rate": 9.30232558139535e-05,
|
| 635 |
+
"loss": 0.7742,
|
| 636 |
+
"step": 2310
|
| 637 |
+
},
|
| 638 |
+
{
|
| 639 |
+
"epoch": 0.3690269673553067,
|
| 640 |
+
"grad_norm": 0.6775010824203491,
|
| 641 |
+
"learning_rate": 9.292833412434741e-05,
|
| 642 |
+
"loss": 0.7822,
|
| 643 |
+
"step": 2340
|
| 644 |
+
},
|
| 645 |
+
{
|
| 646 |
+
"epoch": 0.3737580823214004,
|
| 647 |
+
"grad_norm": 0.7151722311973572,
|
| 648 |
+
"learning_rate": 9.283341243474134e-05,
|
| 649 |
+
"loss": 0.7617,
|
| 650 |
+
"step": 2370
|
| 651 |
+
},
|
| 652 |
+
{
|
| 653 |
+
"epoch": 0.3784891972874941,
|
| 654 |
+
"grad_norm": 0.6855128407478333,
|
| 655 |
+
"learning_rate": 9.273849074513526e-05,
|
| 656 |
+
"loss": 0.7668,
|
| 657 |
+
"step": 2400
|
| 658 |
+
},
|
| 659 |
+
{
|
| 660 |
+
"epoch": 0.3784891972874941,
|
| 661 |
+
"eval_loss": 0.8862702250480652,
|
| 662 |
+
"eval_runtime": 3.7541,
|
| 663 |
+
"eval_samples_per_second": 26.904,
|
| 664 |
+
"eval_steps_per_second": 3.463,
|
| 665 |
+
"step": 2400
|
| 666 |
+
},
|
| 667 |
+
{
|
| 668 |
+
"epoch": 0.38322031225358777,
|
| 669 |
+
"grad_norm": 0.743325412273407,
|
| 670 |
+
"learning_rate": 9.26435690555292e-05,
|
| 671 |
+
"loss": 0.7885,
|
| 672 |
+
"step": 2430
|
| 673 |
+
},
|
| 674 |
+
{
|
| 675 |
+
"epoch": 0.38795142721968146,
|
| 676 |
+
"grad_norm": 0.6186659932136536,
|
| 677 |
+
"learning_rate": 9.254864736592311e-05,
|
| 678 |
+
"loss": 0.7619,
|
| 679 |
+
"step": 2460
|
| 680 |
+
},
|
| 681 |
+
{
|
| 682 |
+
"epoch": 0.39268254218577514,
|
| 683 |
+
"grad_norm": 0.6791619062423706,
|
| 684 |
+
"learning_rate": 9.245372567631704e-05,
|
| 685 |
+
"loss": 0.8084,
|
| 686 |
+
"step": 2490
|
| 687 |
+
},
|
| 688 |
+
{
|
| 689 |
+
"epoch": 0.39741365715186877,
|
| 690 |
+
"grad_norm": 0.6537867784500122,
|
| 691 |
+
"learning_rate": 9.235880398671097e-05,
|
| 692 |
+
"loss": 0.7641,
|
| 693 |
+
"step": 2520
|
| 694 |
+
},
|
| 695 |
+
{
|
| 696 |
+
"epoch": 0.40214477211796246,
|
| 697 |
+
"grad_norm": 0.6688680052757263,
|
| 698 |
+
"learning_rate": 9.22638822971049e-05,
|
| 699 |
+
"loss": 0.7634,
|
| 700 |
+
"step": 2550
|
| 701 |
+
},
|
| 702 |
+
{
|
| 703 |
+
"epoch": 0.40687588708405614,
|
| 704 |
+
"grad_norm": 0.6369423866271973,
|
| 705 |
+
"learning_rate": 9.216896060749882e-05,
|
| 706 |
+
"loss": 0.7407,
|
| 707 |
+
"step": 2580
|
| 708 |
+
},
|
| 709 |
+
{
|
| 710 |
+
"epoch": 0.4100299637281186,
|
| 711 |
+
"eval_loss": 0.8817442059516907,
|
| 712 |
+
"eval_runtime": 3.7541,
|
| 713 |
+
"eval_samples_per_second": 26.904,
|
| 714 |
+
"eval_steps_per_second": 3.463,
|
| 715 |
+
"step": 2600
|
| 716 |
+
},
|
| 717 |
+
{
|
| 718 |
+
"epoch": 0.41160700205014983,
|
| 719 |
+
"grad_norm": 0.6841573119163513,
|
| 720 |
+
"learning_rate": 9.207403891789275e-05,
|
| 721 |
+
"loss": 0.7572,
|
| 722 |
+
"step": 2610
|
| 723 |
+
},
|
| 724 |
+
{
|
| 725 |
+
"epoch": 0.4163381170162435,
|
| 726 |
+
"grad_norm": 0.625957727432251,
|
| 727 |
+
"learning_rate": 9.197911722828667e-05,
|
| 728 |
+
"loss": 0.7493,
|
| 729 |
+
"step": 2640
|
| 730 |
+
},
|
| 731 |
+
{
|
| 732 |
+
"epoch": 0.42106923198233714,
|
| 733 |
+
"grad_norm": 0.7467941641807556,
|
| 734 |
+
"learning_rate": 9.18841955386806e-05,
|
| 735 |
+
"loss": 0.7468,
|
| 736 |
+
"step": 2670
|
| 737 |
+
},
|
| 738 |
+
{
|
| 739 |
+
"epoch": 0.42580034694843083,
|
| 740 |
+
"grad_norm": 0.6891815662384033,
|
| 741 |
+
"learning_rate": 9.178927384907452e-05,
|
| 742 |
+
"loss": 0.7698,
|
| 743 |
+
"step": 2700
|
| 744 |
+
},
|
| 745 |
+
{
|
| 746 |
+
"epoch": 0.4305314619145245,
|
| 747 |
+
"grad_norm": 0.6197889447212219,
|
| 748 |
+
"learning_rate": 9.169435215946845e-05,
|
| 749 |
+
"loss": 0.7588,
|
| 750 |
+
"step": 2730
|
| 751 |
+
},
|
| 752 |
+
{
|
| 753 |
+
"epoch": 0.4352625768806182,
|
| 754 |
+
"grad_norm": 0.7140328884124756,
|
| 755 |
+
"learning_rate": 9.159943046986237e-05,
|
| 756 |
+
"loss": 0.7569,
|
| 757 |
+
"step": 2760
|
| 758 |
+
},
|
| 759 |
+
{
|
| 760 |
+
"epoch": 0.4399936918467119,
|
| 761 |
+
"grad_norm": 0.7718496322631836,
|
| 762 |
+
"learning_rate": 9.15045087802563e-05,
|
| 763 |
+
"loss": 0.7448,
|
| 764 |
+
"step": 2790
|
| 765 |
+
},
|
| 766 |
+
{
|
| 767 |
+
"epoch": 0.4415707301687431,
|
| 768 |
+
"eval_loss": 0.8855557441711426,
|
| 769 |
+
"eval_runtime": 3.7544,
|
| 770 |
+
"eval_samples_per_second": 26.902,
|
| 771 |
+
"eval_steps_per_second": 3.463,
|
| 772 |
+
"step": 2800
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 0.4447248068128056,
|
| 776 |
+
"grad_norm": 0.6447039246559143,
|
| 777 |
+
"learning_rate": 9.140958709065022e-05,
|
| 778 |
+
"loss": 0.7623,
|
| 779 |
+
"step": 2820
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 0.4494559217788992,
|
| 783 |
+
"grad_norm": 0.6694769859313965,
|
| 784 |
+
"learning_rate": 9.131466540104415e-05,
|
| 785 |
+
"loss": 0.7081,
|
| 786 |
+
"step": 2850
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 0.4541870367449929,
|
| 790 |
+
"grad_norm": 0.6863081455230713,
|
| 791 |
+
"learning_rate": 9.121974371143806e-05,
|
| 792 |
+
"loss": 0.7228,
|
| 793 |
+
"step": 2880
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 0.4589181517110866,
|
| 797 |
+
"grad_norm": 0.7198454737663269,
|
| 798 |
+
"learning_rate": 9.1124822021832e-05,
|
| 799 |
+
"loss": 0.7356,
|
| 800 |
+
"step": 2910
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 0.46364926667718026,
|
| 804 |
+
"grad_norm": 0.6542885303497314,
|
| 805 |
+
"learning_rate": 9.102990033222591e-05,
|
| 806 |
+
"loss": 0.7606,
|
| 807 |
+
"step": 2940
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.46838038164327395,
|
| 811 |
+
"grad_norm": 0.657539963722229,
|
| 812 |
+
"learning_rate": 9.093497864261984e-05,
|
| 813 |
+
"loss": 0.7255,
|
| 814 |
+
"step": 2970
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 0.47311149660936763,
|
| 818 |
+
"grad_norm": 0.819503664970398,
|
| 819 |
+
"learning_rate": 9.084005695301376e-05,
|
| 820 |
+
"loss": 0.7184,
|
| 821 |
+
"step": 3000
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 0.47311149660936763,
|
| 825 |
+
"eval_loss": 0.8140414357185364,
|
| 826 |
+
"eval_runtime": 3.7531,
|
| 827 |
+
"eval_samples_per_second": 26.911,
|
| 828 |
+
"eval_steps_per_second": 3.464,
|
| 829 |
+
"step": 3000
|
| 830 |
+
},
|
| 831 |
+
{
|
| 832 |
+
"epoch": 0.47784261157546126,
|
| 833 |
+
"grad_norm": 0.7199704647064209,
|
| 834 |
+
"learning_rate": 9.074513526340769e-05,
|
| 835 |
+
"loss": 0.7227,
|
| 836 |
+
"step": 3030
|
| 837 |
+
},
|
| 838 |
+
{
|
| 839 |
+
"epoch": 0.48257372654155495,
|
| 840 |
+
"grad_norm": 0.7655025720596313,
|
| 841 |
+
"learning_rate": 9.065021357380162e-05,
|
| 842 |
+
"loss": 0.7217,
|
| 843 |
+
"step": 3060
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.48730484150764863,
|
| 847 |
+
"grad_norm": 0.7312873601913452,
|
| 848 |
+
"learning_rate": 9.055845594051574e-05,
|
| 849 |
+
"loss": 0.7059,
|
| 850 |
+
"step": 3090
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"epoch": 0.4920359564737423,
|
| 854 |
+
"grad_norm": 0.5961809158325195,
|
| 855 |
+
"learning_rate": 9.046353425090967e-05,
|
| 856 |
+
"loss": 0.7033,
|
| 857 |
+
"step": 3120
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"epoch": 0.496767071439836,
|
| 861 |
+
"grad_norm": 0.6955564022064209,
|
| 862 |
+
"learning_rate": 9.03686125613036e-05,
|
| 863 |
+
"loss": 0.7289,
|
| 864 |
+
"step": 3150
|
| 865 |
+
},
|
| 866 |
+
{
|
| 867 |
+
"epoch": 0.5014981864059297,
|
| 868 |
+
"grad_norm": 0.6622660160064697,
|
| 869 |
+
"learning_rate": 9.027369087169752e-05,
|
| 870 |
+
"loss": 0.6935,
|
| 871 |
+
"step": 3180
|
| 872 |
+
},
|
| 873 |
+
{
|
| 874 |
+
"epoch": 0.5046522630499921,
|
| 875 |
+
"eval_loss": 0.7775673270225525,
|
| 876 |
+
"eval_runtime": 3.754,
|
| 877 |
+
"eval_samples_per_second": 26.904,
|
| 878 |
+
"eval_steps_per_second": 3.463,
|
| 879 |
+
"step": 3200
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"epoch": 0.5062293013720234,
|
| 883 |
+
"grad_norm": 0.7262014746665955,
|
| 884 |
+
"learning_rate": 9.017876918209145e-05,
|
| 885 |
+
"loss": 0.6906,
|
| 886 |
+
"step": 3210
|
| 887 |
+
},
|
| 888 |
+
{
|
| 889 |
+
"epoch": 0.5109604163381171,
|
| 890 |
+
"grad_norm": 0.7221697568893433,
|
| 891 |
+
"learning_rate": 9.008384749248537e-05,
|
| 892 |
+
"loss": 0.7079,
|
| 893 |
+
"step": 3240
|
| 894 |
+
},
|
| 895 |
+
{
|
| 896 |
+
"epoch": 0.5156915313042106,
|
| 897 |
+
"grad_norm": 0.7115603089332581,
|
| 898 |
+
"learning_rate": 8.99889258028793e-05,
|
| 899 |
+
"loss": 0.7191,
|
| 900 |
+
"step": 3270
|
| 901 |
+
},
|
| 902 |
+
{
|
| 903 |
+
"epoch": 0.5204226462703043,
|
| 904 |
+
"grad_norm": 0.7292232513427734,
|
| 905 |
+
"learning_rate": 8.989400411327322e-05,
|
| 906 |
+
"loss": 0.6702,
|
| 907 |
+
"step": 3300
|
| 908 |
+
},
|
| 909 |
+
{
|
| 910 |
+
"epoch": 0.525153761236398,
|
| 911 |
+
"grad_norm": 0.741580605506897,
|
| 912 |
+
"learning_rate": 8.979908242366715e-05,
|
| 913 |
+
"loss": 0.6762,
|
| 914 |
+
"step": 3330
|
| 915 |
+
},
|
| 916 |
+
{
|
| 917 |
+
"epoch": 0.5298848762024917,
|
| 918 |
+
"grad_norm": 0.7870708107948303,
|
| 919 |
+
"learning_rate": 8.970416073406108e-05,
|
| 920 |
+
"loss": 0.6838,
|
| 921 |
+
"step": 3360
|
| 922 |
+
},
|
| 923 |
+
{
|
| 924 |
+
"epoch": 0.5346159911685854,
|
| 925 |
+
"grad_norm": 0.71812903881073,
|
| 926 |
+
"learning_rate": 8.9609239044455e-05,
|
| 927 |
+
"loss": 0.7174,
|
| 928 |
+
"step": 3390
|
| 929 |
+
},
|
| 930 |
+
{
|
| 931 |
+
"epoch": 0.5361930294906166,
|
| 932 |
+
"eval_loss": 0.7375061511993408,
|
| 933 |
+
"eval_runtime": 3.7548,
|
| 934 |
+
"eval_samples_per_second": 26.899,
|
| 935 |
+
"eval_steps_per_second": 3.462,
|
| 936 |
+
"step": 3400
|
| 937 |
+
},
|
| 938 |
+
{
|
| 939 |
+
"epoch": 0.5393471061346791,
|
| 940 |
+
"grad_norm": 0.7266995906829834,
|
| 941 |
+
"learning_rate": 8.951431735484893e-05,
|
| 942 |
+
"loss": 0.6763,
|
| 943 |
+
"step": 3420
|
| 944 |
+
},
|
| 945 |
+
{
|
| 946 |
+
"epoch": 0.5440782211007728,
|
| 947 |
+
"grad_norm": 0.7786857485771179,
|
| 948 |
+
"learning_rate": 8.941939566524284e-05,
|
| 949 |
+
"loss": 0.7149,
|
| 950 |
+
"step": 3450
|
| 951 |
+
},
|
| 952 |
+
{
|
| 953 |
+
"epoch": 0.5488093360668664,
|
| 954 |
+
"grad_norm": 0.7807109355926514,
|
| 955 |
+
"learning_rate": 8.932447397563677e-05,
|
| 956 |
+
"loss": 0.6534,
|
| 957 |
+
"step": 3480
|
| 958 |
+
},
|
| 959 |
+
{
|
| 960 |
+
"epoch": 0.5535404510329601,
|
| 961 |
+
"grad_norm": 0.6960239410400391,
|
| 962 |
+
"learning_rate": 8.922955228603069e-05,
|
| 963 |
+
"loss": 0.7313,
|
| 964 |
+
"step": 3510
|
| 965 |
+
},
|
| 966 |
+
{
|
| 967 |
+
"epoch": 0.5582715659990538,
|
| 968 |
+
"grad_norm": 0.586615264415741,
|
| 969 |
+
"learning_rate": 8.913463059642462e-05,
|
| 970 |
+
"loss": 0.6579,
|
| 971 |
+
"step": 3540
|
| 972 |
+
},
|
| 973 |
+
{
|
| 974 |
+
"epoch": 0.5630026809651475,
|
| 975 |
+
"grad_norm": 0.9740248918533325,
|
| 976 |
+
"learning_rate": 8.903970890681854e-05,
|
| 977 |
+
"loss": 0.7013,
|
| 978 |
+
"step": 3570
|
| 979 |
+
},
|
| 980 |
+
{
|
| 981 |
+
"epoch": 0.5677337959312412,
|
| 982 |
+
"grad_norm": 0.6628558039665222,
|
| 983 |
+
"learning_rate": 8.894478721721247e-05,
|
| 984 |
+
"loss": 0.6546,
|
| 985 |
+
"step": 3600
|
| 986 |
+
},
|
| 987 |
+
{
|
| 988 |
+
"epoch": 0.5677337959312412,
|
| 989 |
+
"eval_loss": 0.7031014561653137,
|
| 990 |
+
"eval_runtime": 3.7542,
|
| 991 |
+
"eval_samples_per_second": 26.903,
|
| 992 |
+
"eval_steps_per_second": 3.463,
|
| 993 |
+
"step": 3600
|
| 994 |
+
},
|
| 995 |
+
{
|
| 996 |
+
"epoch": 0.5724649108973348,
|
| 997 |
+
"grad_norm": 0.6030669808387756,
|
| 998 |
+
"learning_rate": 8.884986552760639e-05,
|
| 999 |
+
"loss": 0.7146,
|
| 1000 |
+
"step": 3630
|
| 1001 |
+
},
|
| 1002 |
+
{
|
| 1003 |
+
"epoch": 0.5771960258634284,
|
| 1004 |
+
"grad_norm": 0.6010313034057617,
|
| 1005 |
+
"learning_rate": 8.875494383800032e-05,
|
| 1006 |
+
"loss": 0.6816,
|
| 1007 |
+
"step": 3660
|
| 1008 |
+
},
|
| 1009 |
+
{
|
| 1010 |
+
"epoch": 0.5819271408295221,
|
| 1011 |
+
"grad_norm": 0.6319311857223511,
|
| 1012 |
+
"learning_rate": 8.866002214839425e-05,
|
| 1013 |
+
"loss": 0.6642,
|
| 1014 |
+
"step": 3690
|
| 1015 |
+
},
|
| 1016 |
+
{
|
| 1017 |
+
"epoch": 0.5866582557956158,
|
| 1018 |
+
"grad_norm": 0.6059941053390503,
|
| 1019 |
+
"learning_rate": 8.856510045878817e-05,
|
| 1020 |
+
"loss": 0.6998,
|
| 1021 |
+
"step": 3720
|
| 1022 |
+
},
|
| 1023 |
+
{
|
| 1024 |
+
"epoch": 0.5913893707617095,
|
| 1025 |
+
"grad_norm": 0.5976997017860413,
|
| 1026 |
+
"learning_rate": 8.84701787691821e-05,
|
| 1027 |
+
"loss": 0.6694,
|
| 1028 |
+
"step": 3750
|
| 1029 |
+
},
|
| 1030 |
+
{
|
| 1031 |
+
"epoch": 0.5961204857278032,
|
| 1032 |
+
"grad_norm": 0.6985177993774414,
|
| 1033 |
+
"learning_rate": 8.837525707957602e-05,
|
| 1034 |
+
"loss": 0.6402,
|
| 1035 |
+
"step": 3780
|
| 1036 |
+
},
|
| 1037 |
+
{
|
| 1038 |
+
"epoch": 0.5992745623718656,
|
| 1039 |
+
"eval_loss": 0.6977850198745728,
|
| 1040 |
+
"eval_runtime": 3.7545,
|
| 1041 |
+
"eval_samples_per_second": 26.901,
|
| 1042 |
+
"eval_steps_per_second": 3.462,
|
| 1043 |
+
"step": 3800
|
| 1044 |
+
},
|
| 1045 |
+
{
|
| 1046 |
+
"epoch": 0.6008516006938969,
|
| 1047 |
+
"grad_norm": 0.7076742053031921,
|
| 1048 |
+
"learning_rate": 8.828033538996995e-05,
|
| 1049 |
+
"loss": 0.6749,
|
| 1050 |
+
"step": 3810
|
| 1051 |
+
},
|
| 1052 |
+
{
|
| 1053 |
+
"epoch": 0.6055827156599906,
|
| 1054 |
+
"grad_norm": 0.9254401326179504,
|
| 1055 |
+
"learning_rate": 8.818541370036387e-05,
|
| 1056 |
+
"loss": 0.6481,
|
| 1057 |
+
"step": 3840
|
| 1058 |
+
},
|
| 1059 |
+
{
|
| 1060 |
+
"epoch": 0.6103138306260842,
|
| 1061 |
+
"grad_norm": 0.7403334379196167,
|
| 1062 |
+
"learning_rate": 8.80904920107578e-05,
|
| 1063 |
+
"loss": 0.6704,
|
| 1064 |
+
"step": 3870
|
| 1065 |
+
},
|
| 1066 |
+
{
|
| 1067 |
+
"epoch": 0.6150449455921779,
|
| 1068 |
+
"grad_norm": 0.6302973628044128,
|
| 1069 |
+
"learning_rate": 8.799557032115171e-05,
|
| 1070 |
+
"loss": 0.6717,
|
| 1071 |
+
"step": 3900
|
| 1072 |
+
},
|
| 1073 |
+
{
|
| 1074 |
+
"epoch": 0.6197760605582716,
|
| 1075 |
+
"grad_norm": 0.7587308287620544,
|
| 1076 |
+
"learning_rate": 8.790064863154565e-05,
|
| 1077 |
+
"loss": 0.6526,
|
| 1078 |
+
"step": 3930
|
| 1079 |
+
},
|
| 1080 |
+
{
|
| 1081 |
+
"epoch": 0.6245071755243652,
|
| 1082 |
+
"grad_norm": 0.768151581287384,
|
| 1083 |
+
"learning_rate": 8.780572694193956e-05,
|
| 1084 |
+
"loss": 0.6614,
|
| 1085 |
+
"step": 3960
|
| 1086 |
+
},
|
| 1087 |
+
{
|
| 1088 |
+
"epoch": 0.6292382904904589,
|
| 1089 |
+
"grad_norm": 0.662624716758728,
|
| 1090 |
+
"learning_rate": 8.77108052523335e-05,
|
| 1091 |
+
"loss": 0.6471,
|
| 1092 |
+
"step": 3990
|
| 1093 |
+
},
|
| 1094 |
+
{
|
| 1095 |
+
"epoch": 0.6308153288124901,
|
| 1096 |
+
"eval_loss": 0.6685364246368408,
|
| 1097 |
+
"eval_runtime": 3.7533,
|
| 1098 |
+
"eval_samples_per_second": 26.909,
|
| 1099 |
+
"eval_steps_per_second": 3.464,
|
| 1100 |
+
"step": 4000
|
| 1101 |
+
},
|
| 1102 |
+
{
|
| 1103 |
+
"epoch": 0.6339694054565526,
|
| 1104 |
+
"grad_norm": 0.614434540271759,
|
| 1105 |
+
"learning_rate": 8.761588356272743e-05,
|
| 1106 |
+
"loss": 0.6305,
|
| 1107 |
+
"step": 4020
|
| 1108 |
+
},
|
| 1109 |
+
{
|
| 1110 |
+
"epoch": 0.6387005204226462,
|
| 1111 |
+
"grad_norm": 0.7292618751525879,
|
| 1112 |
+
"learning_rate": 8.752096187312134e-05,
|
| 1113 |
+
"loss": 0.632,
|
| 1114 |
+
"step": 4050
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"epoch": 0.6434316353887399,
|
| 1118 |
+
"grad_norm": 0.5890663862228394,
|
| 1119 |
+
"learning_rate": 8.742604018351527e-05,
|
| 1120 |
+
"loss": 0.6594,
|
| 1121 |
+
"step": 4080
|
| 1122 |
+
},
|
| 1123 |
+
{
|
| 1124 |
+
"epoch": 0.6481627503548336,
|
| 1125 |
+
"grad_norm": 0.6511669158935547,
|
| 1126 |
+
"learning_rate": 8.733111849390919e-05,
|
| 1127 |
+
"loss": 0.6417,
|
| 1128 |
+
"step": 4110
|
| 1129 |
+
},
|
| 1130 |
+
{
|
| 1131 |
+
"epoch": 0.6528938653209273,
|
| 1132 |
+
"grad_norm": 0.6794877648353577,
|
| 1133 |
+
"learning_rate": 8.723619680430312e-05,
|
| 1134 |
+
"loss": 0.6472,
|
| 1135 |
+
"step": 4140
|
| 1136 |
+
},
|
| 1137 |
+
{
|
| 1138 |
+
"epoch": 0.657624980287021,
|
| 1139 |
+
"grad_norm": 0.5826547145843506,
|
| 1140 |
+
"learning_rate": 8.714127511469704e-05,
|
| 1141 |
+
"loss": 0.6255,
|
| 1142 |
+
"step": 4170
|
| 1143 |
+
},
|
| 1144 |
+
{
|
| 1145 |
+
"epoch": 0.6623560952531147,
|
| 1146 |
+
"grad_norm": 0.8411812782287598,
|
| 1147 |
+
"learning_rate": 8.704635342509097e-05,
|
| 1148 |
+
"loss": 0.6368,
|
| 1149 |
+
"step": 4200
|
| 1150 |
+
},
|
| 1151 |
+
{
|
| 1152 |
+
"epoch": 0.6623560952531147,
|
| 1153 |
+
"eval_loss": 0.6538847088813782,
|
| 1154 |
+
"eval_runtime": 3.7543,
|
| 1155 |
+
"eval_samples_per_second": 26.903,
|
| 1156 |
+
"eval_steps_per_second": 3.463,
|
| 1157 |
+
"step": 4200
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"epoch": 0.6670872102192084,
|
| 1161 |
+
"grad_norm": 0.5682166218757629,
|
| 1162 |
+
"learning_rate": 8.69514317354849e-05,
|
| 1163 |
+
"loss": 0.6269,
|
| 1164 |
+
"step": 4230
|
| 1165 |
+
},
|
| 1166 |
+
{
|
| 1167 |
+
"epoch": 0.671818325185302,
|
| 1168 |
+
"grad_norm": 0.6340855360031128,
|
| 1169 |
+
"learning_rate": 8.685651004587882e-05,
|
| 1170 |
+
"loss": 0.6423,
|
| 1171 |
+
"step": 4260
|
| 1172 |
+
},
|
| 1173 |
+
{
|
| 1174 |
+
"epoch": 0.6765494401513957,
|
| 1175 |
+
"grad_norm": 0.6693681478500366,
|
| 1176 |
+
"learning_rate": 8.676158835627275e-05,
|
| 1177 |
+
"loss": 0.6471,
|
| 1178 |
+
"step": 4290
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 0.6812805551174893,
|
| 1182 |
+
"grad_norm": 0.6101056337356567,
|
| 1183 |
+
"learning_rate": 8.666666666666667e-05,
|
| 1184 |
+
"loss": 0.6168,
|
| 1185 |
+
"step": 4320
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"epoch": 0.686011670083583,
|
| 1189 |
+
"grad_norm": 0.6096228361129761,
|
| 1190 |
+
"learning_rate": 8.65717449770606e-05,
|
| 1191 |
+
"loss": 0.6494,
|
| 1192 |
+
"step": 4350
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"epoch": 0.6907427850496767,
|
| 1196 |
+
"grad_norm": 0.6632306575775146,
|
| 1197 |
+
"learning_rate": 8.647682328745452e-05,
|
| 1198 |
+
"loss": 0.664,
|
| 1199 |
+
"step": 4380
|
| 1200 |
+
},
|
| 1201 |
+
{
|
| 1202 |
+
"epoch": 0.6938968616937392,
|
| 1203 |
+
"eval_loss": 0.6377571225166321,
|
| 1204 |
+
"eval_runtime": 3.756,
|
| 1205 |
+
"eval_samples_per_second": 26.89,
|
| 1206 |
+
"eval_steps_per_second": 3.461,
|
| 1207 |
+
"step": 4400
|
| 1208 |
+
},
|
| 1209 |
+
{
|
| 1210 |
+
"epoch": 0.6954739000157704,
|
| 1211 |
+
"grad_norm": 0.6547721028327942,
|
| 1212 |
+
"learning_rate": 8.638190159784845e-05,
|
| 1213 |
+
"loss": 0.6091,
|
| 1214 |
+
"step": 4410
|
| 1215 |
+
},
|
| 1216 |
+
{
|
| 1217 |
+
"epoch": 0.700205014981864,
|
| 1218 |
+
"grad_norm": 0.6063847541809082,
|
| 1219 |
+
"learning_rate": 8.628697990824237e-05,
|
| 1220 |
+
"loss": 0.6055,
|
| 1221 |
+
"step": 4440
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 0.7049361299479577,
|
| 1225 |
+
"grad_norm": 0.6687933802604675,
|
| 1226 |
+
"learning_rate": 8.61920582186363e-05,
|
| 1227 |
+
"loss": 0.601,
|
| 1228 |
+
"step": 4470
|
| 1229 |
+
},
|
| 1230 |
+
{
|
| 1231 |
+
"epoch": 0.7096672449140514,
|
| 1232 |
+
"grad_norm": 0.701770007610321,
|
| 1233 |
+
"learning_rate": 8.609713652903021e-05,
|
| 1234 |
+
"loss": 0.6064,
|
| 1235 |
+
"step": 4500
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"epoch": 0.7143983598801451,
|
| 1239 |
+
"grad_norm": 0.6652805209159851,
|
| 1240 |
+
"learning_rate": 8.600221483942414e-05,
|
| 1241 |
+
"loss": 0.653,
|
| 1242 |
+
"step": 4530
|
| 1243 |
+
},
|
| 1244 |
+
{
|
| 1245 |
+
"epoch": 0.7191294748462388,
|
| 1246 |
+
"grad_norm": 0.6469018459320068,
|
| 1247 |
+
"learning_rate": 8.590729314981806e-05,
|
| 1248 |
+
"loss": 0.6019,
|
| 1249 |
+
"step": 4560
|
| 1250 |
+
},
|
| 1251 |
+
{
|
| 1252 |
+
"epoch": 0.7238605898123325,
|
| 1253 |
+
"grad_norm": 0.6343564391136169,
|
| 1254 |
+
"learning_rate": 8.5812371460212e-05,
|
| 1255 |
+
"loss": 0.6083,
|
| 1256 |
+
"step": 4590
|
| 1257 |
+
},
|
| 1258 |
+
{
|
| 1259 |
+
"epoch": 0.7254376281343636,
|
| 1260 |
+
"eval_loss": 0.6411118507385254,
|
| 1261 |
+
"eval_runtime": 3.754,
|
| 1262 |
+
"eval_samples_per_second": 26.905,
|
| 1263 |
+
"eval_steps_per_second": 3.463,
|
| 1264 |
+
"step": 4600
|
| 1265 |
+
},
|
| 1266 |
+
{
|
| 1267 |
+
"epoch": 0.7285917047784262,
|
| 1268 |
+
"grad_norm": 0.5817134976387024,
|
| 1269 |
+
"learning_rate": 8.571744977060592e-05,
|
| 1270 |
+
"loss": 0.602,
|
| 1271 |
+
"step": 4620
|
| 1272 |
+
},
|
| 1273 |
+
{
|
| 1274 |
+
"epoch": 0.7333228197445197,
|
| 1275 |
+
"grad_norm": 0.5552039742469788,
|
| 1276 |
+
"learning_rate": 8.562252808099984e-05,
|
| 1277 |
+
"loss": 0.6223,
|
| 1278 |
+
"step": 4650
|
| 1279 |
+
},
|
| 1280 |
+
{
|
| 1281 |
+
"epoch": 0.7380539347106134,
|
| 1282 |
+
"grad_norm": 0.6455065011978149,
|
| 1283 |
+
"learning_rate": 8.552760639139377e-05,
|
| 1284 |
+
"loss": 0.5865,
|
| 1285 |
+
"step": 4680
|
| 1286 |
+
},
|
| 1287 |
+
{
|
| 1288 |
+
"epoch": 0.7427850496767071,
|
| 1289 |
+
"grad_norm": 0.6448588371276855,
|
| 1290 |
+
"learning_rate": 8.543268470178769e-05,
|
| 1291 |
+
"loss": 0.6126,
|
| 1292 |
+
"step": 4710
|
| 1293 |
+
},
|
| 1294 |
+
{
|
| 1295 |
+
"epoch": 0.7475161646428008,
|
| 1296 |
+
"grad_norm": 0.6447100639343262,
|
| 1297 |
+
"learning_rate": 8.533776301218162e-05,
|
| 1298 |
+
"loss": 0.6167,
|
| 1299 |
+
"step": 4740
|
| 1300 |
+
},
|
| 1301 |
+
{
|
| 1302 |
+
"epoch": 0.7522472796088945,
|
| 1303 |
+
"grad_norm": 0.6894412636756897,
|
| 1304 |
+
"learning_rate": 8.524284132257555e-05,
|
| 1305 |
+
"loss": 0.5851,
|
| 1306 |
+
"step": 4770
|
| 1307 |
+
},
|
| 1308 |
+
{
|
| 1309 |
+
"epoch": 0.7569783945749882,
|
| 1310 |
+
"grad_norm": 0.6036236882209778,
|
| 1311 |
+
"learning_rate": 8.514791963296947e-05,
|
| 1312 |
+
"loss": 0.6025,
|
| 1313 |
+
"step": 4800
|
| 1314 |
+
},
|
| 1315 |
+
{
|
| 1316 |
+
"epoch": 0.7569783945749882,
|
| 1317 |
+
"eval_loss": 0.6117845177650452,
|
| 1318 |
+
"eval_runtime": 3.7554,
|
| 1319 |
+
"eval_samples_per_second": 26.894,
|
| 1320 |
+
"eval_steps_per_second": 3.462,
|
| 1321 |
+
"step": 4800
|
| 1322 |
+
},
|
| 1323 |
+
{
|
| 1324 |
+
"epoch": 0.7617095095410819,
|
| 1325 |
+
"grad_norm": 0.6214340925216675,
|
| 1326 |
+
"learning_rate": 8.50529979433634e-05,
|
| 1327 |
+
"loss": 0.6145,
|
| 1328 |
+
"step": 4830
|
| 1329 |
+
},
|
| 1330 |
+
{
|
| 1331 |
+
"epoch": 0.7664406245071755,
|
| 1332 |
+
"grad_norm": 0.6933445334434509,
|
| 1333 |
+
"learning_rate": 8.495807625375732e-05,
|
| 1334 |
+
"loss": 0.6184,
|
| 1335 |
+
"step": 4860
|
| 1336 |
+
},
|
| 1337 |
+
{
|
| 1338 |
+
"epoch": 0.7711717394732692,
|
| 1339 |
+
"grad_norm": 0.5649739503860474,
|
| 1340 |
+
"learning_rate": 8.486315456415125e-05,
|
| 1341 |
+
"loss": 0.5996,
|
| 1342 |
+
"step": 4890
|
| 1343 |
+
},
|
| 1344 |
+
{
|
| 1345 |
+
"epoch": 0.7759028544393629,
|
| 1346 |
+
"grad_norm": 0.6250168085098267,
|
| 1347 |
+
"learning_rate": 8.476823287454517e-05,
|
| 1348 |
+
"loss": 0.5762,
|
| 1349 |
+
"step": 4920
|
| 1350 |
+
},
|
| 1351 |
+
{
|
| 1352 |
+
"epoch": 0.7806339694054566,
|
| 1353 |
+
"grad_norm": 1.7125053405761719,
|
| 1354 |
+
"learning_rate": 8.46733111849391e-05,
|
| 1355 |
+
"loss": 0.5716,
|
| 1356 |
+
"step": 4950
|
| 1357 |
+
},
|
| 1358 |
+
{
|
| 1359 |
+
"epoch": 0.7853650843715503,
|
| 1360 |
+
"grad_norm": 0.5721966028213501,
|
| 1361 |
+
"learning_rate": 8.457838949533302e-05,
|
| 1362 |
+
"loss": 0.5612,
|
| 1363 |
+
"step": 4980
|
| 1364 |
+
},
|
| 1365 |
+
{
|
| 1366 |
+
"epoch": 0.7885191610156127,
|
| 1367 |
+
"eval_loss": 0.5980841517448425,
|
| 1368 |
+
"eval_runtime": 3.7547,
|
| 1369 |
+
"eval_samples_per_second": 26.9,
|
| 1370 |
+
"eval_steps_per_second": 3.462,
|
| 1371 |
+
"step": 5000
|
| 1372 |
+
},
|
| 1373 |
+
{
|
| 1374 |
+
"epoch": 0.7900961993376439,
|
| 1375 |
+
"grad_norm": 0.6716078519821167,
|
| 1376 |
+
"learning_rate": 8.448346780572695e-05,
|
| 1377 |
+
"loss": 0.5765,
|
| 1378 |
+
"step": 5010
|
| 1379 |
+
},
|
| 1380 |
+
{
|
| 1381 |
+
"epoch": 0.7948273143037375,
|
| 1382 |
+
"grad_norm": 0.6005885601043701,
|
| 1383 |
+
"learning_rate": 8.438854611612086e-05,
|
| 1384 |
+
"loss": 0.5941,
|
| 1385 |
+
"step": 5040
|
| 1386 |
+
},
|
| 1387 |
+
{
|
| 1388 |
+
"epoch": 0.7995584292698312,
|
| 1389 |
+
"grad_norm": 0.6507188081741333,
|
| 1390 |
+
"learning_rate": 8.42936244265148e-05,
|
| 1391 |
+
"loss": 0.5827,
|
| 1392 |
+
"step": 5070
|
| 1393 |
+
},
|
| 1394 |
+
{
|
| 1395 |
+
"epoch": 0.8042895442359249,
|
| 1396 |
+
"grad_norm": 0.7276827096939087,
|
| 1397 |
+
"learning_rate": 8.419870273690871e-05,
|
| 1398 |
+
"loss": 0.5555,
|
| 1399 |
+
"step": 5100
|
| 1400 |
+
},
|
| 1401 |
+
{
|
| 1402 |
+
"epoch": 0.8090206592020186,
|
| 1403 |
+
"grad_norm": 0.6792399287223816,
|
| 1404 |
+
"learning_rate": 8.410378104730264e-05,
|
| 1405 |
+
"loss": 0.5724,
|
| 1406 |
+
"step": 5130
|
| 1407 |
+
},
|
| 1408 |
+
{
|
| 1409 |
+
"epoch": 0.8137517741681123,
|
| 1410 |
+
"grad_norm": 0.7074045538902283,
|
| 1411 |
+
"learning_rate": 8.400885935769656e-05,
|
| 1412 |
+
"loss": 0.5724,
|
| 1413 |
+
"step": 5160
|
| 1414 |
+
},
|
| 1415 |
+
{
|
| 1416 |
+
"epoch": 0.818482889134206,
|
| 1417 |
+
"grad_norm": 0.6056311130523682,
|
| 1418 |
+
"learning_rate": 8.391393766809049e-05,
|
| 1419 |
+
"loss": 0.5546,
|
| 1420 |
+
"step": 5190
|
| 1421 |
+
},
|
| 1422 |
+
{
|
| 1423 |
+
"epoch": 0.8200599274562372,
|
| 1424 |
+
"eval_loss": 0.5805890560150146,
|
| 1425 |
+
"eval_runtime": 3.7561,
|
| 1426 |
+
"eval_samples_per_second": 26.889,
|
| 1427 |
+
"eval_steps_per_second": 3.461,
|
| 1428 |
+
"step": 5200
|
| 1429 |
+
},
|
| 1430 |
+
{
|
| 1431 |
+
"epoch": 0.8232140041002997,
|
| 1432 |
+
"grad_norm": 0.6667674779891968,
|
| 1433 |
+
"learning_rate": 8.381901597848441e-05,
|
| 1434 |
+
"loss": 0.6173,
|
| 1435 |
+
"step": 5220
|
| 1436 |
+
},
|
| 1437 |
+
{
|
| 1438 |
+
"epoch": 0.8279451190663933,
|
| 1439 |
+
"grad_norm": 0.607284426689148,
|
| 1440 |
+
"learning_rate": 8.372409428887834e-05,
|
| 1441 |
+
"loss": 0.5781,
|
| 1442 |
+
"step": 5250
|
| 1443 |
+
},
|
| 1444 |
+
{
|
| 1445 |
+
"epoch": 0.832676234032487,
|
| 1446 |
+
"grad_norm": 0.6476745009422302,
|
| 1447 |
+
"learning_rate": 8.362917259927227e-05,
|
| 1448 |
+
"loss": 0.5667,
|
| 1449 |
+
"step": 5280
|
| 1450 |
+
},
|
| 1451 |
+
{
|
| 1452 |
+
"epoch": 0.8374073489985807,
|
| 1453 |
+
"grad_norm": 0.6668260097503662,
|
| 1454 |
+
"learning_rate": 8.35342509096662e-05,
|
| 1455 |
+
"loss": 0.5456,
|
| 1456 |
+
"step": 5310
|
| 1457 |
+
},
|
| 1458 |
+
{
|
| 1459 |
+
"epoch": 0.8421384639646743,
|
| 1460 |
+
"grad_norm": 0.585110068321228,
|
| 1461 |
+
"learning_rate": 8.343932922006012e-05,
|
| 1462 |
+
"loss": 0.5648,
|
| 1463 |
+
"step": 5340
|
| 1464 |
+
},
|
| 1465 |
+
{
|
| 1466 |
+
"epoch": 0.846869578930768,
|
| 1467 |
+
"grad_norm": 0.6268571019172668,
|
| 1468 |
+
"learning_rate": 8.334757158677425e-05,
|
| 1469 |
+
"loss": 0.555,
|
| 1470 |
+
"step": 5370
|
| 1471 |
+
},
|
| 1472 |
+
{
|
| 1473 |
+
"epoch": 0.8516006938968617,
|
| 1474 |
+
"grad_norm": 0.6197232604026794,
|
| 1475 |
+
"learning_rate": 8.325264989716818e-05,
|
| 1476 |
+
"loss": 0.5333,
|
| 1477 |
+
"step": 5400
|
| 1478 |
+
},
|
| 1479 |
+
{
|
| 1480 |
+
"epoch": 0.8516006938968617,
|
| 1481 |
+
"eval_loss": 0.5601951479911804,
|
| 1482 |
+
"eval_runtime": 3.7534,
|
| 1483 |
+
"eval_samples_per_second": 26.909,
|
| 1484 |
+
"eval_steps_per_second": 3.464,
|
| 1485 |
+
"step": 5400
|
| 1486 |
+
},
|
| 1487 |
+
{
|
| 1488 |
+
"epoch": 0.8563318088629553,
|
| 1489 |
+
"grad_norm": 0.63880455493927,
|
| 1490 |
+
"learning_rate": 8.31577282075621e-05,
|
| 1491 |
+
"loss": 0.5602,
|
| 1492 |
+
"step": 5430
|
| 1493 |
+
},
|
| 1494 |
+
{
|
| 1495 |
+
"epoch": 0.861062923829049,
|
| 1496 |
+
"grad_norm": 0.6235695481300354,
|
| 1497 |
+
"learning_rate": 8.306280651795603e-05,
|
| 1498 |
+
"loss": 0.5604,
|
| 1499 |
+
"step": 5460
|
| 1500 |
+
},
|
| 1501 |
+
{
|
| 1502 |
+
"epoch": 0.8657940387951427,
|
| 1503 |
+
"grad_norm": 0.9000911712646484,
|
| 1504 |
+
"learning_rate": 8.296788482834995e-05,
|
| 1505 |
+
"loss": 0.5654,
|
| 1506 |
+
"step": 5490
|
| 1507 |
+
},
|
| 1508 |
+
{
|
| 1509 |
+
"epoch": 0.8705251537612364,
|
| 1510 |
+
"grad_norm": 0.6557802557945251,
|
| 1511 |
+
"learning_rate": 8.287612719506408e-05,
|
| 1512 |
+
"loss": 0.5962,
|
| 1513 |
+
"step": 5520
|
| 1514 |
+
},
|
| 1515 |
+
{
|
| 1516 |
+
"epoch": 0.8752562687273301,
|
| 1517 |
+
"grad_norm": 0.6231096982955933,
|
| 1518 |
+
"learning_rate": 8.278120550545801e-05,
|
| 1519 |
+
"loss": 0.5636,
|
| 1520 |
+
"step": 5550
|
| 1521 |
+
},
|
| 1522 |
+
{
|
| 1523 |
+
"epoch": 0.8799873836934238,
|
| 1524 |
+
"grad_norm": 0.5984258651733398,
|
| 1525 |
+
"learning_rate": 8.268628381585192e-05,
|
| 1526 |
+
"loss": 0.5616,
|
| 1527 |
+
"step": 5580
|
| 1528 |
+
},
|
| 1529 |
+
{
|
| 1530 |
+
"epoch": 0.8831414603374862,
|
| 1531 |
+
"eval_loss": 0.5611711740493774,
|
| 1532 |
+
"eval_runtime": 3.7542,
|
| 1533 |
+
"eval_samples_per_second": 26.903,
|
| 1534 |
+
"eval_steps_per_second": 3.463,
|
| 1535 |
+
"step": 5600
|
| 1536 |
+
},
|
| 1537 |
+
{
|
| 1538 |
+
"epoch": 0.8847184986595175,
|
| 1539 |
+
"grad_norm": 0.5818042159080505,
|
| 1540 |
+
"learning_rate": 8.259452618256605e-05,
|
| 1541 |
+
"loss": 0.5316,
|
| 1542 |
+
"step": 5610
|
| 1543 |
+
},
|
| 1544 |
+
{
|
| 1545 |
+
"epoch": 0.8894496136256111,
|
| 1546 |
+
"grad_norm": 0.7120912671089172,
|
| 1547 |
+
"learning_rate": 8.249960449295998e-05,
|
| 1548 |
+
"loss": 0.5556,
|
| 1549 |
+
"step": 5640
|
| 1550 |
+
},
|
| 1551 |
+
{
|
| 1552 |
+
"epoch": 0.8941807285917048,
|
| 1553 |
+
"grad_norm": 0.6223446130752563,
|
| 1554 |
+
"learning_rate": 8.24046828033539e-05,
|
| 1555 |
+
"loss": 0.5452,
|
| 1556 |
+
"step": 5670
|
| 1557 |
+
},
|
| 1558 |
+
{
|
| 1559 |
+
"epoch": 0.8989118435577984,
|
| 1560 |
+
"grad_norm": 0.6196858286857605,
|
| 1561 |
+
"learning_rate": 8.230976111374783e-05,
|
| 1562 |
+
"loss": 0.5601,
|
| 1563 |
+
"step": 5700
|
| 1564 |
+
},
|
| 1565 |
+
{
|
| 1566 |
+
"epoch": 0.9036429585238921,
|
| 1567 |
+
"grad_norm": 0.6353973150253296,
|
| 1568 |
+
"learning_rate": 8.221483942414175e-05,
|
| 1569 |
+
"loss": 0.5402,
|
| 1570 |
+
"step": 5730
|
| 1571 |
+
},
|
| 1572 |
+
{
|
| 1573 |
+
"epoch": 0.9083740734899858,
|
| 1574 |
+
"grad_norm": 0.6631510257720947,
|
| 1575 |
+
"learning_rate": 8.211991773453568e-05,
|
| 1576 |
+
"loss": 0.5382,
|
| 1577 |
+
"step": 5760
|
| 1578 |
+
},
|
| 1579 |
+
{
|
| 1580 |
+
"epoch": 0.9131051884560795,
|
| 1581 |
+
"grad_norm": 0.6404465436935425,
|
| 1582 |
+
"learning_rate": 8.20249960449296e-05,
|
| 1583 |
+
"loss": 0.5298,
|
| 1584 |
+
"step": 5790
|
| 1585 |
+
},
|
| 1586 |
+
{
|
| 1587 |
+
"epoch": 0.9146822267781107,
|
| 1588 |
+
"eval_loss": 0.560188353061676,
|
| 1589 |
+
"eval_runtime": 3.7541,
|
| 1590 |
+
"eval_samples_per_second": 26.904,
|
| 1591 |
+
"eval_steps_per_second": 3.463,
|
| 1592 |
+
"step": 5800
|
| 1593 |
+
},
|
| 1594 |
+
{
|
| 1595 |
+
"epoch": 0.9178363034221731,
|
| 1596 |
+
"grad_norm": 0.6810153126716614,
|
| 1597 |
+
"learning_rate": 8.193007435532353e-05,
|
| 1598 |
+
"loss": 0.5159,
|
| 1599 |
+
"step": 5820
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"epoch": 0.9225674183882668,
|
| 1603 |
+
"grad_norm": 0.5828801989555359,
|
| 1604 |
+
"learning_rate": 8.183515266571745e-05,
|
| 1605 |
+
"loss": 0.5155,
|
| 1606 |
+
"step": 5850
|
| 1607 |
+
},
|
| 1608 |
+
{
|
| 1609 |
+
"epoch": 0.9272985333543605,
|
| 1610 |
+
"grad_norm": 0.538987934589386,
|
| 1611 |
+
"learning_rate": 8.174023097611138e-05,
|
| 1612 |
+
"loss": 0.5273,
|
| 1613 |
+
"step": 5880
|
| 1614 |
+
},
|
| 1615 |
+
{
|
| 1616 |
+
"epoch": 0.9320296483204542,
|
| 1617 |
+
"grad_norm": 0.6222363114356995,
|
| 1618 |
+
"learning_rate": 8.16453092865053e-05,
|
| 1619 |
+
"loss": 0.526,
|
| 1620 |
+
"step": 5910
|
| 1621 |
+
},
|
| 1622 |
+
{
|
| 1623 |
+
"epoch": 0.9367607632865479,
|
| 1624 |
+
"grad_norm": 0.542966902256012,
|
| 1625 |
+
"learning_rate": 8.155038759689923e-05,
|
| 1626 |
+
"loss": 0.5653,
|
| 1627 |
+
"step": 5940
|
| 1628 |
+
},
|
| 1629 |
+
{
|
| 1630 |
+
"epoch": 0.9414918782526416,
|
| 1631 |
+
"grad_norm": 0.7064533829689026,
|
| 1632 |
+
"learning_rate": 8.145546590729315e-05,
|
| 1633 |
+
"loss": 0.5207,
|
| 1634 |
+
"step": 5970
|
| 1635 |
+
},
|
| 1636 |
+
{
|
| 1637 |
+
"epoch": 0.9462229932187353,
|
| 1638 |
+
"grad_norm": 0.6652514934539795,
|
| 1639 |
+
"learning_rate": 8.136054421768708e-05,
|
| 1640 |
+
"loss": 0.5342,
|
| 1641 |
+
"step": 6000
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 0.9462229932187353,
|
| 1645 |
+
"eval_loss": 0.5476773977279663,
|
| 1646 |
+
"eval_runtime": 3.7543,
|
| 1647 |
+
"eval_samples_per_second": 26.902,
|
| 1648 |
+
"eval_steps_per_second": 3.463,
|
| 1649 |
+
"step": 6000
|
| 1650 |
+
},
|
| 1651 |
+
{
|
| 1652 |
+
"epoch": 0.9509541081848288,
|
| 1653 |
+
"grad_norm": 0.6436010003089905,
|
| 1654 |
+
"learning_rate": 8.126562252808101e-05,
|
| 1655 |
+
"loss": 0.536,
|
| 1656 |
+
"step": 6030
|
| 1657 |
+
},
|
| 1658 |
+
{
|
| 1659 |
+
"epoch": 0.9556852231509225,
|
| 1660 |
+
"grad_norm": 0.5532657504081726,
|
| 1661 |
+
"learning_rate": 8.117070083847494e-05,
|
| 1662 |
+
"loss": 0.5261,
|
| 1663 |
+
"step": 6060
|
| 1664 |
+
},
|
| 1665 |
+
{
|
| 1666 |
+
"epoch": 0.9604163381170162,
|
| 1667 |
+
"grad_norm": 0.6539950370788574,
|
| 1668 |
+
"learning_rate": 8.107577914886886e-05,
|
| 1669 |
+
"loss": 0.5226,
|
| 1670 |
+
"step": 6090
|
| 1671 |
+
},
|
| 1672 |
+
{
|
| 1673 |
+
"epoch": 0.9651474530831099,
|
| 1674 |
+
"grad_norm": 0.5767289996147156,
|
| 1675 |
+
"learning_rate": 8.098085745926279e-05,
|
| 1676 |
+
"loss": 0.534,
|
| 1677 |
+
"step": 6120
|
| 1678 |
+
},
|
| 1679 |
+
{
|
| 1680 |
+
"epoch": 0.9698785680492036,
|
| 1681 |
+
"grad_norm": 0.6355389356613159,
|
| 1682 |
+
"learning_rate": 8.08859357696567e-05,
|
| 1683 |
+
"loss": 0.5282,
|
| 1684 |
+
"step": 6150
|
| 1685 |
+
},
|
| 1686 |
+
{
|
| 1687 |
+
"epoch": 0.9746096830152973,
|
| 1688 |
+
"grad_norm": 0.6711322665214539,
|
| 1689 |
+
"learning_rate": 8.079101408005064e-05,
|
| 1690 |
+
"loss": 0.5384,
|
| 1691 |
+
"step": 6180
|
| 1692 |
+
},
|
| 1693 |
+
{
|
| 1694 |
+
"epoch": 0.9777637596593597,
|
| 1695 |
+
"eval_loss": 0.5372142195701599,
|
| 1696 |
+
"eval_runtime": 3.7547,
|
| 1697 |
+
"eval_samples_per_second": 26.899,
|
| 1698 |
+
"eval_steps_per_second": 3.462,
|
| 1699 |
+
"step": 6200
|
| 1700 |
+
},
|
| 1701 |
+
{
|
| 1702 |
+
"epoch": 0.979340797981391,
|
| 1703 |
+
"grad_norm": 0.5990795493125916,
|
| 1704 |
+
"learning_rate": 8.069609239044455e-05,
|
| 1705 |
+
"loss": 0.4624,
|
| 1706 |
+
"step": 6210
|
| 1707 |
+
},
|
| 1708 |
+
{
|
| 1709 |
+
"epoch": 0.9840719129474846,
|
| 1710 |
+
"grad_norm": 0.6971167325973511,
|
| 1711 |
+
"learning_rate": 8.060117070083848e-05,
|
| 1712 |
+
"loss": 0.5015,
|
| 1713 |
+
"step": 6240
|
| 1714 |
+
},
|
| 1715 |
+
{
|
| 1716 |
+
"epoch": 0.9888030279135783,
|
| 1717 |
+
"grad_norm": 0.6699081659317017,
|
| 1718 |
+
"learning_rate": 8.05062490112324e-05,
|
| 1719 |
+
"loss": 0.5325,
|
| 1720 |
+
"step": 6270
|
| 1721 |
+
},
|
| 1722 |
+
{
|
| 1723 |
+
"epoch": 0.993534142879672,
|
| 1724 |
+
"grad_norm": 0.6347541213035583,
|
| 1725 |
+
"learning_rate": 8.041132732162633e-05,
|
| 1726 |
+
"loss": 0.5255,
|
| 1727 |
+
"step": 6300
|
| 1728 |
+
},
|
| 1729 |
+
{
|
| 1730 |
+
"epoch": 0.9982652578457657,
|
| 1731 |
+
"grad_norm": 0.7587487101554871,
|
| 1732 |
+
"learning_rate": 8.031640563202025e-05,
|
| 1733 |
+
"loss": 0.5154,
|
| 1734 |
+
"step": 6330
|
| 1735 |
+
}
|
| 1736 |
+
],
|
| 1737 |
+
"logging_steps": 30,
|
| 1738 |
+
"max_steps": 31705,
|
| 1739 |
+
"num_input_tokens_seen": 0,
|
| 1740 |
+
"num_train_epochs": 5,
|
| 1741 |
+
"save_steps": 500,
|
| 1742 |
+
"stateful_callbacks": {
|
| 1743 |
+
"TrainerControl": {
|
| 1744 |
+
"args": {
|
| 1745 |
+
"should_epoch_stop": false,
|
| 1746 |
+
"should_evaluate": false,
|
| 1747 |
+
"should_log": false,
|
| 1748 |
+
"should_save": true,
|
| 1749 |
+
"should_training_stop": false
|
| 1750 |
+
},
|
| 1751 |
+
"attributes": {}
|
| 1752 |
+
}
|
| 1753 |
+
},
|
| 1754 |
+
"total_flos": 2.9843838888449147e+18,
|
| 1755 |
+
"train_batch_size": 2,
|
| 1756 |
+
"trial_name": null,
|
| 1757 |
+
"trial_params": null
|
| 1758 |
+
}
|
checkpoint-6341/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a54e267381bb5495a94c0e010aacd60a26fbc7a49b6188c7488c38be0ea28c37
|
| 3 |
+
size 6267
|
checkpoint-6341/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 215 |
+
exclude_frozen_parameters)
|
| 216 |
+
elif zero_stage == 3:
|
| 217 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 218 |
+
exclude_frozen_parameters)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 222 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 223 |
+
return
|
| 224 |
+
|
| 225 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 226 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 227 |
+
|
| 228 |
+
if debug:
|
| 229 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 230 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 231 |
+
|
| 232 |
+
wanted_params = len(frozen_param_shapes)
|
| 233 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 235 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 236 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 237 |
+
|
| 238 |
+
total_params = 0
|
| 239 |
+
total_numel = 0
|
| 240 |
+
for name, shape in frozen_param_shapes.items():
|
| 241 |
+
total_params += 1
|
| 242 |
+
unpartitioned_numel = shape.numel()
|
| 243 |
+
total_numel += unpartitioned_numel
|
| 244 |
+
|
| 245 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 246 |
+
|
| 247 |
+
if debug:
|
| 248 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 249 |
+
|
| 250 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def _has_callable(obj, fn):
|
| 254 |
+
attr = getattr(obj, fn, None)
|
| 255 |
+
return callable(attr)
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 259 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 260 |
+
|
| 261 |
+
# Reconstruction protocol:
|
| 262 |
+
#
|
| 263 |
+
# XXX: document this
|
| 264 |
+
|
| 265 |
+
if debug:
|
| 266 |
+
for i in range(world_size):
|
| 267 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 268 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 269 |
+
|
| 270 |
+
# XXX: memory usage doubles here (zero2)
|
| 271 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 272 |
+
merged_single_partition_of_fp32_groups = []
|
| 273 |
+
for i in range(num_param_groups):
|
| 274 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 275 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 276 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 277 |
+
avail_numel = sum(
|
| 278 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 279 |
+
|
| 280 |
+
if debug:
|
| 281 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 282 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 283 |
+
# not asserting if there is a mismatch due to possible padding
|
| 284 |
+
print(f"Have {avail_numel} numels to process.")
|
| 285 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 286 |
+
|
| 287 |
+
# params
|
| 288 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 289 |
+
# out-of-core computing solution
|
| 290 |
+
total_numel = 0
|
| 291 |
+
total_params = 0
|
| 292 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 293 |
+
offset = 0
|
| 294 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 295 |
+
for name, shape in shapes.items():
|
| 296 |
+
|
| 297 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 298 |
+
total_numel += unpartitioned_numel
|
| 299 |
+
total_params += 1
|
| 300 |
+
|
| 301 |
+
if debug:
|
| 302 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 303 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 304 |
+
offset += unpartitioned_numel
|
| 305 |
+
|
| 306 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 307 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 308 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 309 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 310 |
+
align_to = 2 * world_size
|
| 311 |
+
|
| 312 |
+
def zero2_align(x):
|
| 313 |
+
return align_to * math.ceil(x / align_to)
|
| 314 |
+
|
| 315 |
+
if debug:
|
| 316 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 317 |
+
|
| 318 |
+
offset = zero2_align(offset)
|
| 319 |
+
avail_numel = zero2_align(avail_numel)
|
| 320 |
+
|
| 321 |
+
if debug:
|
| 322 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 323 |
+
|
| 324 |
+
# Sanity check
|
| 325 |
+
if offset != avail_numel:
|
| 326 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 327 |
+
|
| 328 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 332 |
+
exclude_frozen_parameters):
|
| 333 |
+
state_dict = OrderedDict()
|
| 334 |
+
|
| 335 |
+
# buffers
|
| 336 |
+
buffers = zero_model_states[0].buffers
|
| 337 |
+
state_dict.update(buffers)
|
| 338 |
+
if debug:
|
| 339 |
+
print(f"added {len(buffers)} buffers")
|
| 340 |
+
|
| 341 |
+
if not exclude_frozen_parameters:
|
| 342 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 343 |
+
|
| 344 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 345 |
+
|
| 346 |
+
# recover shared parameters
|
| 347 |
+
for pair in zero_model_states[0].shared_params:
|
| 348 |
+
if pair[1] in state_dict:
|
| 349 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 350 |
+
|
| 351 |
+
return state_dict
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 355 |
+
remainder = unpartitioned_numel % world_size
|
| 356 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 357 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 358 |
+
return partitioned_numel, padding_numel
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 362 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 363 |
+
return
|
| 364 |
+
|
| 365 |
+
if debug:
|
| 366 |
+
for i in range(world_size):
|
| 367 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 368 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 369 |
+
|
| 370 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 371 |
+
wanted_params = len(frozen_param_shapes)
|
| 372 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 373 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 374 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 375 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 376 |
+
|
| 377 |
+
total_params = 0
|
| 378 |
+
total_numel = 0
|
| 379 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 380 |
+
total_params += 1
|
| 381 |
+
unpartitioned_numel = shape.numel()
|
| 382 |
+
total_numel += unpartitioned_numel
|
| 383 |
+
|
| 384 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 385 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 386 |
+
|
| 387 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 388 |
+
|
| 389 |
+
if debug:
|
| 390 |
+
print(
|
| 391 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 398 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 399 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 400 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 401 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 402 |
+
|
| 403 |
+
# merge list of dicts, preserving order
|
| 404 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 405 |
+
|
| 406 |
+
if debug:
|
| 407 |
+
for i in range(world_size):
|
| 408 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 409 |
+
|
| 410 |
+
wanted_params = len(param_shapes)
|
| 411 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 412 |
+
# not asserting if there is a mismatch due to possible padding
|
| 413 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 414 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 415 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 416 |
+
|
| 417 |
+
# params
|
| 418 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 419 |
+
# out-of-core computing solution
|
| 420 |
+
offset = 0
|
| 421 |
+
total_numel = 0
|
| 422 |
+
total_params = 0
|
| 423 |
+
for name, shape in param_shapes.items():
|
| 424 |
+
|
| 425 |
+
unpartitioned_numel = shape.numel()
|
| 426 |
+
total_numel += unpartitioned_numel
|
| 427 |
+
total_params += 1
|
| 428 |
+
|
| 429 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 430 |
+
|
| 431 |
+
if debug:
|
| 432 |
+
print(
|
| 433 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
# XXX: memory usage doubles here
|
| 437 |
+
state_dict[name] = torch.cat(
|
| 438 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 439 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 440 |
+
offset += partitioned_numel
|
| 441 |
+
|
| 442 |
+
offset *= world_size
|
| 443 |
+
|
| 444 |
+
# Sanity check
|
| 445 |
+
if offset != avail_numel:
|
| 446 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 447 |
+
|
| 448 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 452 |
+
exclude_frozen_parameters):
|
| 453 |
+
state_dict = OrderedDict()
|
| 454 |
+
|
| 455 |
+
# buffers
|
| 456 |
+
buffers = zero_model_states[0].buffers
|
| 457 |
+
state_dict.update(buffers)
|
| 458 |
+
if debug:
|
| 459 |
+
print(f"added {len(buffers)} buffers")
|
| 460 |
+
|
| 461 |
+
if not exclude_frozen_parameters:
|
| 462 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 463 |
+
|
| 464 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 465 |
+
|
| 466 |
+
# recover shared parameters
|
| 467 |
+
for pair in zero_model_states[0].shared_params:
|
| 468 |
+
if pair[1] in state_dict:
|
| 469 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 470 |
+
|
| 471 |
+
return state_dict
|
| 472 |
+
|
| 473 |
+
|
| 474 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 475 |
+
"""
|
| 476 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 477 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 478 |
+
via a model hub.
|
| 479 |
+
|
| 480 |
+
Args:
|
| 481 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 482 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 483 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 484 |
+
|
| 485 |
+
Returns:
|
| 486 |
+
- pytorch ``state_dict``
|
| 487 |
+
|
| 488 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 489 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 490 |
+
the checkpoint.
|
| 491 |
+
|
| 492 |
+
A typical usage might be ::
|
| 493 |
+
|
| 494 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 495 |
+
# do the training and checkpoint saving
|
| 496 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 497 |
+
model = model.cpu() # move to cpu
|
| 498 |
+
model.load_state_dict(state_dict)
|
| 499 |
+
# submit to model hub or save the model to share with others
|
| 500 |
+
|
| 501 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 502 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 503 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 504 |
+
|
| 505 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 506 |
+
|
| 507 |
+
"""
|
| 508 |
+
if tag is None:
|
| 509 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 510 |
+
if os.path.isfile(latest_path):
|
| 511 |
+
with open(latest_path, 'r') as fd:
|
| 512 |
+
tag = fd.read().strip()
|
| 513 |
+
else:
|
| 514 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 515 |
+
|
| 516 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 517 |
+
|
| 518 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 519 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 520 |
+
|
| 521 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
| 525 |
+
"""
|
| 526 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 527 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 528 |
+
|
| 529 |
+
Args:
|
| 530 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 531 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 532 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 533 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 534 |
+
"""
|
| 535 |
+
|
| 536 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 537 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 538 |
+
torch.save(state_dict, output_file)
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 542 |
+
"""
|
| 543 |
+
1. Put the provided model to cpu
|
| 544 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 545 |
+
3. Load it into the provided model
|
| 546 |
+
|
| 547 |
+
Args:
|
| 548 |
+
- ``model``: the model object to update
|
| 549 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 550 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 551 |
+
|
| 552 |
+
Returns:
|
| 553 |
+
- ``model`: modified model
|
| 554 |
+
|
| 555 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 556 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 557 |
+
conveniently placed for you in the checkpoint folder.
|
| 558 |
+
|
| 559 |
+
A typical usage might be ::
|
| 560 |
+
|
| 561 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 562 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 563 |
+
# submit to model hub or save the model to share with others
|
| 564 |
+
|
| 565 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 566 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 567 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 568 |
+
|
| 569 |
+
"""
|
| 570 |
+
logger.info(f"Extracting fp32 weights")
|
| 571 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 572 |
+
|
| 573 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 574 |
+
model = model.cpu()
|
| 575 |
+
model.load_state_dict(state_dict, strict=False)
|
| 576 |
+
|
| 577 |
+
return model
|
| 578 |
+
|
| 579 |
+
|
| 580 |
+
if __name__ == "__main__":
|
| 581 |
+
|
| 582 |
+
parser = argparse.ArgumentParser()
|
| 583 |
+
parser.add_argument("checkpoint_dir",
|
| 584 |
+
type=str,
|
| 585 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 586 |
+
parser.add_argument(
|
| 587 |
+
"output_file",
|
| 588 |
+
type=str,
|
| 589 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 590 |
+
parser.add_argument("-t",
|
| 591 |
+
"--tag",
|
| 592 |
+
type=str,
|
| 593 |
+
default=None,
|
| 594 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 595 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 596 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 597 |
+
args = parser.parse_args()
|
| 598 |
+
|
| 599 |
+
debug = args.debug
|
| 600 |
+
|
| 601 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 602 |
+
args.output_file,
|
| 603 |
+
tag=args.tag,
|
| 604 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|