Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -109,6 +109,31 @@ print( result) | |
| 109 | 
             
            [{'label': 'paraphrase', 'score': 0.9801033139228821}, {'label': 'not_paraphrase', 'score': 0.9302119016647339}]
         | 
| 110 | 
             
            ```
         | 
| 111 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 112 | 
             
            ## Training and evaluation data
         | 
| 113 |  | 
| 114 | 
             
            More information needed
         | 
|  | |
| 109 | 
             
            [{'label': 'paraphrase', 'score': 0.9801033139228821}, {'label': 'not_paraphrase', 'score': 0.9302119016647339}]
         | 
| 110 | 
             
            ```
         | 
| 111 |  | 
| 112 | 
            +
            Using AutoModel & AutoTokenizer:
         | 
| 113 | 
            +
             | 
| 114 | 
            +
             | 
| 115 | 
            +
            ```python
         | 
| 116 | 
            +
            from transformers import AutoTokenizer, AutoModelForSequenceClassification
         | 
| 117 | 
            +
            import torch
         | 
| 118 | 
            +
             | 
| 119 | 
            +
            tokenizer = AutoTokenizer.from_pretrained("azherali/bert_paraphrase")
         | 
| 120 | 
            +
            model = AutoModelForSequenceClassification.from_pretrained("azherali/bert_paraphrase")
         | 
| 121 | 
            +
             | 
| 122 | 
            +
            # Example sentences
         | 
| 123 | 
            +
            sent1 = "The quick brown fox jumps over the lazy dog."
         | 
| 124 | 
            +
            sent2 = "A fast brown fox leaps over a lazy dog."
         | 
| 125 | 
            +
             | 
| 126 | 
            +
            inputs = tokenizer(sent1, sent2, return_tensors="pt")
         | 
| 127 | 
            +
            outputs = model(**inputs)
         | 
| 128 | 
            +
             | 
| 129 | 
            +
            logits = outputs.logits
         | 
| 130 | 
            +
            predicted_class = torch.argmax(logits, dim=1).item()
         | 
| 131 | 
            +
             | 
| 132 | 
            +
            print("Prediction:", model.config.id2label[predicted_class])
         | 
| 133 | 
            +
            Prediction: paraphrase
         | 
| 134 | 
            +
            ```
         | 
| 135 | 
            +
             | 
| 136 | 
            +
             | 
| 137 | 
             
            ## Training and evaluation data
         | 
| 138 |  | 
| 139 | 
             
            More information needed
         | 
