Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- .gitignore +9 -0
- README.md +19 -0
- pyproject.toml +28 -0
- src/main.py +59 -0
- src/pipeline.py +133 -0
- uv.lock +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
sample.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
**/.cache
|
2 |
+
**/__pycache__
|
3 |
+
**/*.egg-info
|
4 |
+
*.safetensors
|
5 |
+
**/.venv
|
6 |
+
.venv
|
7 |
+
.git
|
8 |
+
*.png
|
9 |
+
*.jpeg
|
README.md
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flux-schnell-edge-inference
|
2 |
+
|
3 |
+
This holds the baseline for the FLUX Schnel NVIDIA GeForce RTX 4090 contest, which can be forked freely and optimized
|
4 |
+
|
5 |
+
Some recommendations are as follows:
|
6 |
+
- Installing dependencies should be done in `pyproject.toml`, including git dependencies
|
7 |
+
- HuggingFace models should be specified in the `models` array in the `pyproject.toml` file, and will be downloaded before benchmarking
|
8 |
+
- The pipeline does **not** have internet access so all dependencies and models must be included in the `pyproject.toml`
|
9 |
+
- Compiled models should be hosted on HuggingFace and included in the `models` array in the `pyproject.toml` (rather than compiling during loading). Loading time matters far more than file sizes
|
10 |
+
- Avoid changing `src/main.py`, as that includes mostly protocol logic. Most changes should be in `models` and `src/pipeline.py`
|
11 |
+
- Ensure the entire repository (excluding dependencies and HuggingFace models) is under 16MB
|
12 |
+
|
13 |
+
For testing, you need a docker container with pytorch and ubuntu 22.04.
|
14 |
+
You can download your listed dependencies with `uv`, installed with:
|
15 |
+
```bash
|
16 |
+
pipx ensurepath
|
17 |
+
pipx install uv
|
18 |
+
```
|
19 |
+
You can then relock with `uv lock`, and then run with `uv run start_inference`
|
pyproject.toml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools >= 75.0"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "flux-schnell-edge-inference"
|
7 |
+
description = "An edge-maxxing model submission for the 4090 Flux contest"
|
8 |
+
requires-python = ">=3.10,<3.13"
|
9 |
+
version = "7"
|
10 |
+
dependencies = [
|
11 |
+
"diffusers==0.31.0",
|
12 |
+
"transformers==4.46.2",
|
13 |
+
"accelerate==1.1.0",
|
14 |
+
"omegaconf==2.3.0",
|
15 |
+
"torch==2.5.1",
|
16 |
+
"protobuf==5.28.3",
|
17 |
+
"sentencepiece==0.2.0",
|
18 |
+
"edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
|
19 |
+
"torchao>=0.6.1",
|
20 |
+
"ipython>=8.29.0",
|
21 |
+
"setuptools >= 75.0"
|
22 |
+
]
|
23 |
+
|
24 |
+
[tool.edge-maxxing]
|
25 |
+
models = ["black-forest-labs/FLUX.1-schnell"]
|
26 |
+
|
27 |
+
[project.scripts]
|
28 |
+
start_inference = "main:main"
|
src/main.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import atexit
|
2 |
+
from io import BytesIO
|
3 |
+
from multiprocessing.connection import Listener
|
4 |
+
from os import chmod, remove
|
5 |
+
from os.path import abspath, exists
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from PIL.JpegImagePlugin import JpegImageFile
|
11 |
+
from pipelines.models import TextToImageRequest
|
12 |
+
|
13 |
+
from pipeline import load_pipeline, infer
|
14 |
+
|
15 |
+
SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
|
16 |
+
|
17 |
+
|
18 |
+
def at_exit():
|
19 |
+
torch.cuda.empty_cache()
|
20 |
+
|
21 |
+
|
22 |
+
def main():
|
23 |
+
atexit.register(at_exit)
|
24 |
+
|
25 |
+
print(f"Loading pipeline")
|
26 |
+
pipeline = load_pipeline()
|
27 |
+
|
28 |
+
print(f"Pipeline loaded, creating socket at '{SOCKET}'")
|
29 |
+
|
30 |
+
if exists(SOCKET):
|
31 |
+
remove(SOCKET)
|
32 |
+
|
33 |
+
with Listener(SOCKET) as listener:
|
34 |
+
chmod(SOCKET, 0o777)
|
35 |
+
|
36 |
+
print(f"Awaiting connections")
|
37 |
+
with listener.accept() as connection:
|
38 |
+
print(f"Connected")
|
39 |
+
|
40 |
+
while True:
|
41 |
+
try:
|
42 |
+
request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
|
43 |
+
except EOFError:
|
44 |
+
print(f"Inference socket exiting")
|
45 |
+
|
46 |
+
return
|
47 |
+
|
48 |
+
image = infer(request, pipeline)
|
49 |
+
|
50 |
+
data = BytesIO()
|
51 |
+
image.save(data, format=JpegImageFile.format)
|
52 |
+
|
53 |
+
packet = data.getvalue()
|
54 |
+
|
55 |
+
connection.send_bytes(packet)
|
56 |
+
|
57 |
+
|
58 |
+
if __name__ == '__main__':
|
59 |
+
main()
|
src/pipeline.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from diffusers import FluxPipeline, AutoencoderKL, FluxTransformer2DModel
|
3 |
+
from diffusers.image_processor import VaeImageProcessor
|
4 |
+
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel, CLIPTextConfig, T5Config
|
5 |
+
import torch
|
6 |
+
import gc
|
7 |
+
from PIL.Image import Image
|
8 |
+
from pipelines.models import TextToImageRequest
|
9 |
+
from torch import Generator
|
10 |
+
from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight
|
11 |
+
from time import perf_counter
|
12 |
+
|
13 |
+
|
14 |
+
HOME = os.environ["HOME"]
|
15 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
16 |
+
FLUX_CHECKPOINT = "black-forest-labs/FLUX.1-schnell"
|
17 |
+
# QUANTIZED_MODEL = []
|
18 |
+
QUANTIZED_MODEL = ["transformer", "text_encoder_2", "text_encoder", "vae"]
|
19 |
+
|
20 |
+
|
21 |
+
QUANT_CONFIG = int8_weight_only()
|
22 |
+
DTYPE = torch.bfloat16
|
23 |
+
NUM_STEPS = 4
|
24 |
+
|
25 |
+
def get_transformer(quantize: bool = True, quant_config = int8_weight_only(), quant_ckpt: str = None):
|
26 |
+
if quant_ckpt is not None:
|
27 |
+
config = FluxTransformer2DModel.load_config(FLUX_CHECKPOINT, subfolder="transformer")
|
28 |
+
model = FluxTransformer2DModel.from_config(config).to(DTYPE)
|
29 |
+
state_dict = torch.load(quant_ckpt, map_location="cpu")
|
30 |
+
model.load_state_dict(state_dict, assign=True)
|
31 |
+
print(f"Loaded {quant_ckpt}")
|
32 |
+
return model
|
33 |
+
|
34 |
+
model = FluxTransformer2DModel.from_pretrained(
|
35 |
+
FLUX_CHECKPOINT, subfolder="transformer", torch_dtype=DTYPE
|
36 |
+
)
|
37 |
+
if quantize:
|
38 |
+
quantize_(model, quant_config)
|
39 |
+
return model
|
40 |
+
|
41 |
+
|
42 |
+
def get_text_encoder(quantize: bool = True, quant_config = int8_weight_only(), quant_ckpt: str = None):
|
43 |
+
if quant_ckpt is not None:
|
44 |
+
config = CLIPTextConfig.from_pretrained(FLUX_CHECKPOINT, subfolder="text_encoder")
|
45 |
+
model = CLIPTextModel(config).to(DTYPE)
|
46 |
+
state_dict = torch.load(quant_ckpt, map_location="cpu")
|
47 |
+
model.load_state_dict(state_dict, assign=True)
|
48 |
+
print(f"Loaded {quant_ckpt}")
|
49 |
+
return model
|
50 |
+
|
51 |
+
model = CLIPTextModel.from_pretrained(
|
52 |
+
FLUX_CHECKPOINT, subfolder="text_encoder", torch_dtype=DTYPE
|
53 |
+
)
|
54 |
+
if quantize:
|
55 |
+
quantize_(model, quant_config)
|
56 |
+
return model
|
57 |
+
|
58 |
+
|
59 |
+
def get_text_encoder_2(quantize: bool = True, quant_config = int8_weight_only(), quant_ckpt: str = None):
|
60 |
+
if quant_ckpt is not None:
|
61 |
+
config = T5Config.from_pretrained(FLUX_CHECKPOINT, subfolder="text_encoder_2")
|
62 |
+
model = T5EncoderModel(config).to(DTYPE)
|
63 |
+
state_dict = torch.load(quant_ckpt, map_location="cpu")
|
64 |
+
print(f"Loaded {quant_ckpt}")
|
65 |
+
model.load_state_dict(state_dict, assign=True)
|
66 |
+
return model
|
67 |
+
|
68 |
+
model = T5EncoderModel.from_pretrained(
|
69 |
+
FLUX_CHECKPOINT, subfolder="text_encoder_2", torch_dtype=DTYPE
|
70 |
+
)
|
71 |
+
if quantize:
|
72 |
+
quantize_(model, quant_config)
|
73 |
+
return model
|
74 |
+
|
75 |
+
|
76 |
+
def get_vae(quantize: bool = True, quant_config = int8_weight_only(), quant_ckpt: str = None):
|
77 |
+
if quant_ckpt is not None:
|
78 |
+
config = AutoencoderKL.load_config(FLUX_CHECKPOINT, subfolder="vae")
|
79 |
+
model = AutoencoderKL.from_config(config).to(DTYPE)
|
80 |
+
state_dict = torch.load(quant_ckpt, map_location="cpu")
|
81 |
+
model.load_state_dict(state_dict, assign=True)
|
82 |
+
print(f"Loaded {quant_ckpt}")
|
83 |
+
return model
|
84 |
+
model = AutoencoderKL.from_pretrained(
|
85 |
+
FLUX_CHECKPOINT, subfolder="vae", torch_dtype=DTYPE
|
86 |
+
)
|
87 |
+
if quantize:
|
88 |
+
quantize_(model, quant_config)
|
89 |
+
return model
|
90 |
+
|
91 |
+
|
92 |
+
def empty_cache():
|
93 |
+
gc.collect()
|
94 |
+
torch.cuda.empty_cache()
|
95 |
+
torch.cuda.reset_max_memory_allocated()
|
96 |
+
torch.cuda.reset_peak_memory_stats()
|
97 |
+
|
98 |
+
|
99 |
+
def load_pipeline() -> FluxPipeline:
|
100 |
+
empty_cache()
|
101 |
+
|
102 |
+
pipe = FluxPipeline.from_pretrained(FLUX_CHECKPOINT,
|
103 |
+
torch_dtype=DTYPE)
|
104 |
+
|
105 |
+
pipe.transformer.to(memory_format=torch.channels_last)
|
106 |
+
pipe.vae.to(memory_format=torch.channels_last)
|
107 |
+
pipe.vae = torch.compile(pipe.vae)
|
108 |
+
|
109 |
+
pipe._exclude_from_cpu_offload = ["vae"]
|
110 |
+
|
111 |
+
pipe.enable_sequential_cpu_offload()
|
112 |
+
|
113 |
+
empty_cache()
|
114 |
+
pipe("cat", guidance_scale=0., max_sequence_length=256, num_inference_steps=4)
|
115 |
+
return pipe
|
116 |
+
|
117 |
+
@torch.inference_mode()
|
118 |
+
def infer(request: TextToImageRequest, _pipeline: FluxPipeline) -> Image:
|
119 |
+
if request.seed is None:
|
120 |
+
generator = None
|
121 |
+
else:
|
122 |
+
generator = Generator(device="cuda").manual_seed(request.seed)
|
123 |
+
|
124 |
+
empty_cache()
|
125 |
+
image = _pipeline(prompt=request.prompt,
|
126 |
+
width=request.width,
|
127 |
+
height=request.height,
|
128 |
+
guidance_scale=0.0,
|
129 |
+
generator=generator,
|
130 |
+
output_type="pil",
|
131 |
+
max_sequence_length=256,
|
132 |
+
num_inference_steps=NUM_STEPS).images[0]
|
133 |
+
return image
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|