backboned02 commited on
Commit
a43d4b6
·
verified ·
1 Parent(s): 142fcfd

Upload folder using huggingface_hub

Browse files
Files changed (7) hide show
  1. .gitattributes +1 -0
  2. .gitignore +9 -0
  3. README.md +19 -0
  4. pyproject.toml +28 -0
  5. src/main.py +59 -0
  6. src/pipeline.py +133 -0
  7. uv.lock +0 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ sample.png filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ **/.cache
2
+ **/__pycache__
3
+ **/*.egg-info
4
+ *.safetensors
5
+ **/.venv
6
+ .venv
7
+ .git
8
+ *.png
9
+ *.jpeg
README.md ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flux-schnell-edge-inference
2
+
3
+ This holds the baseline for the FLUX Schnel NVIDIA GeForce RTX 4090 contest, which can be forked freely and optimized
4
+
5
+ Some recommendations are as follows:
6
+ - Installing dependencies should be done in `pyproject.toml`, including git dependencies
7
+ - HuggingFace models should be specified in the `models` array in the `pyproject.toml` file, and will be downloaded before benchmarking
8
+ - The pipeline does **not** have internet access so all dependencies and models must be included in the `pyproject.toml`
9
+ - Compiled models should be hosted on HuggingFace and included in the `models` array in the `pyproject.toml` (rather than compiling during loading). Loading time matters far more than file sizes
10
+ - Avoid changing `src/main.py`, as that includes mostly protocol logic. Most changes should be in `models` and `src/pipeline.py`
11
+ - Ensure the entire repository (excluding dependencies and HuggingFace models) is under 16MB
12
+
13
+ For testing, you need a docker container with pytorch and ubuntu 22.04.
14
+ You can download your listed dependencies with `uv`, installed with:
15
+ ```bash
16
+ pipx ensurepath
17
+ pipx install uv
18
+ ```
19
+ You can then relock with `uv lock`, and then run with `uv run start_inference`
pyproject.toml ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["setuptools >= 75.0"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "flux-schnell-edge-inference"
7
+ description = "An edge-maxxing model submission for the 4090 Flux contest"
8
+ requires-python = ">=3.10,<3.13"
9
+ version = "7"
10
+ dependencies = [
11
+ "diffusers==0.31.0",
12
+ "transformers==4.46.2",
13
+ "accelerate==1.1.0",
14
+ "omegaconf==2.3.0",
15
+ "torch==2.5.1",
16
+ "protobuf==5.28.3",
17
+ "sentencepiece==0.2.0",
18
+ "edge-maxxing-pipelines @ git+https://github.com/womboai/edge-maxxing@7c760ac54f6052803dadb3ade8ebfc9679a94589#subdirectory=pipelines",
19
+ "torchao>=0.6.1",
20
+ "ipython>=8.29.0",
21
+ "setuptools >= 75.0"
22
+ ]
23
+
24
+ [tool.edge-maxxing]
25
+ models = ["black-forest-labs/FLUX.1-schnell"]
26
+
27
+ [project.scripts]
28
+ start_inference = "main:main"
src/main.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import atexit
2
+ from io import BytesIO
3
+ from multiprocessing.connection import Listener
4
+ from os import chmod, remove
5
+ from os.path import abspath, exists
6
+ from pathlib import Path
7
+
8
+ import torch
9
+
10
+ from PIL.JpegImagePlugin import JpegImageFile
11
+ from pipelines.models import TextToImageRequest
12
+
13
+ from pipeline import load_pipeline, infer
14
+
15
+ SOCKET = abspath(Path(__file__).parent.parent / "inferences.sock")
16
+
17
+
18
+ def at_exit():
19
+ torch.cuda.empty_cache()
20
+
21
+
22
+ def main():
23
+ atexit.register(at_exit)
24
+
25
+ print(f"Loading pipeline")
26
+ pipeline = load_pipeline()
27
+
28
+ print(f"Pipeline loaded, creating socket at '{SOCKET}'")
29
+
30
+ if exists(SOCKET):
31
+ remove(SOCKET)
32
+
33
+ with Listener(SOCKET) as listener:
34
+ chmod(SOCKET, 0o777)
35
+
36
+ print(f"Awaiting connections")
37
+ with listener.accept() as connection:
38
+ print(f"Connected")
39
+
40
+ while True:
41
+ try:
42
+ request = TextToImageRequest.model_validate_json(connection.recv_bytes().decode("utf-8"))
43
+ except EOFError:
44
+ print(f"Inference socket exiting")
45
+
46
+ return
47
+
48
+ image = infer(request, pipeline)
49
+
50
+ data = BytesIO()
51
+ image.save(data, format=JpegImageFile.format)
52
+
53
+ packet = data.getvalue()
54
+
55
+ connection.send_bytes(packet)
56
+
57
+
58
+ if __name__ == '__main__':
59
+ main()
src/pipeline.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from diffusers import FluxPipeline, AutoencoderKL, FluxTransformer2DModel
3
+ from diffusers.image_processor import VaeImageProcessor
4
+ from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel, CLIPTextConfig, T5Config
5
+ import torch
6
+ import gc
7
+ from PIL.Image import Image
8
+ from pipelines.models import TextToImageRequest
9
+ from torch import Generator
10
+ from torchao.quantization import quantize_, int8_weight_only, int8_dynamic_activation_int8_weight
11
+ from time import perf_counter
12
+
13
+
14
+ HOME = os.environ["HOME"]
15
+ os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
16
+ FLUX_CHECKPOINT = "black-forest-labs/FLUX.1-schnell"
17
+ # QUANTIZED_MODEL = []
18
+ QUANTIZED_MODEL = ["transformer", "text_encoder_2", "text_encoder", "vae"]
19
+
20
+
21
+ QUANT_CONFIG = int8_weight_only()
22
+ DTYPE = torch.bfloat16
23
+ NUM_STEPS = 4
24
+
25
+ def get_transformer(quantize: bool = True, quant_config = int8_weight_only(), quant_ckpt: str = None):
26
+ if quant_ckpt is not None:
27
+ config = FluxTransformer2DModel.load_config(FLUX_CHECKPOINT, subfolder="transformer")
28
+ model = FluxTransformer2DModel.from_config(config).to(DTYPE)
29
+ state_dict = torch.load(quant_ckpt, map_location="cpu")
30
+ model.load_state_dict(state_dict, assign=True)
31
+ print(f"Loaded {quant_ckpt}")
32
+ return model
33
+
34
+ model = FluxTransformer2DModel.from_pretrained(
35
+ FLUX_CHECKPOINT, subfolder="transformer", torch_dtype=DTYPE
36
+ )
37
+ if quantize:
38
+ quantize_(model, quant_config)
39
+ return model
40
+
41
+
42
+ def get_text_encoder(quantize: bool = True, quant_config = int8_weight_only(), quant_ckpt: str = None):
43
+ if quant_ckpt is not None:
44
+ config = CLIPTextConfig.from_pretrained(FLUX_CHECKPOINT, subfolder="text_encoder")
45
+ model = CLIPTextModel(config).to(DTYPE)
46
+ state_dict = torch.load(quant_ckpt, map_location="cpu")
47
+ model.load_state_dict(state_dict, assign=True)
48
+ print(f"Loaded {quant_ckpt}")
49
+ return model
50
+
51
+ model = CLIPTextModel.from_pretrained(
52
+ FLUX_CHECKPOINT, subfolder="text_encoder", torch_dtype=DTYPE
53
+ )
54
+ if quantize:
55
+ quantize_(model, quant_config)
56
+ return model
57
+
58
+
59
+ def get_text_encoder_2(quantize: bool = True, quant_config = int8_weight_only(), quant_ckpt: str = None):
60
+ if quant_ckpt is not None:
61
+ config = T5Config.from_pretrained(FLUX_CHECKPOINT, subfolder="text_encoder_2")
62
+ model = T5EncoderModel(config).to(DTYPE)
63
+ state_dict = torch.load(quant_ckpt, map_location="cpu")
64
+ print(f"Loaded {quant_ckpt}")
65
+ model.load_state_dict(state_dict, assign=True)
66
+ return model
67
+
68
+ model = T5EncoderModel.from_pretrained(
69
+ FLUX_CHECKPOINT, subfolder="text_encoder_2", torch_dtype=DTYPE
70
+ )
71
+ if quantize:
72
+ quantize_(model, quant_config)
73
+ return model
74
+
75
+
76
+ def get_vae(quantize: bool = True, quant_config = int8_weight_only(), quant_ckpt: str = None):
77
+ if quant_ckpt is not None:
78
+ config = AutoencoderKL.load_config(FLUX_CHECKPOINT, subfolder="vae")
79
+ model = AutoencoderKL.from_config(config).to(DTYPE)
80
+ state_dict = torch.load(quant_ckpt, map_location="cpu")
81
+ model.load_state_dict(state_dict, assign=True)
82
+ print(f"Loaded {quant_ckpt}")
83
+ return model
84
+ model = AutoencoderKL.from_pretrained(
85
+ FLUX_CHECKPOINT, subfolder="vae", torch_dtype=DTYPE
86
+ )
87
+ if quantize:
88
+ quantize_(model, quant_config)
89
+ return model
90
+
91
+
92
+ def empty_cache():
93
+ gc.collect()
94
+ torch.cuda.empty_cache()
95
+ torch.cuda.reset_max_memory_allocated()
96
+ torch.cuda.reset_peak_memory_stats()
97
+
98
+
99
+ def load_pipeline() -> FluxPipeline:
100
+ empty_cache()
101
+
102
+ pipe = FluxPipeline.from_pretrained(FLUX_CHECKPOINT,
103
+ torch_dtype=DTYPE)
104
+
105
+ pipe.transformer.to(memory_format=torch.channels_last)
106
+ pipe.vae.to(memory_format=torch.channels_last)
107
+ pipe.vae = torch.compile(pipe.vae)
108
+
109
+ pipe._exclude_from_cpu_offload = ["vae"]
110
+
111
+ pipe.enable_sequential_cpu_offload()
112
+
113
+ empty_cache()
114
+ pipe("cat", guidance_scale=0., max_sequence_length=256, num_inference_steps=4)
115
+ return pipe
116
+
117
+ @torch.inference_mode()
118
+ def infer(request: TextToImageRequest, _pipeline: FluxPipeline) -> Image:
119
+ if request.seed is None:
120
+ generator = None
121
+ else:
122
+ generator = Generator(device="cuda").manual_seed(request.seed)
123
+
124
+ empty_cache()
125
+ image = _pipeline(prompt=request.prompt,
126
+ width=request.width,
127
+ height=request.height,
128
+ guidance_scale=0.0,
129
+ generator=generator,
130
+ output_type="pil",
131
+ max_sequence_length=256,
132
+ num_inference_steps=NUM_STEPS).images[0]
133
+ return image
uv.lock ADDED
The diff for this file is too large to render. See raw diff