Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +607 -0
- config.json +31 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,607 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- generated_from_trainer
|
9 |
+
- dataset_size:15525
|
10 |
+
- loss:MultipleNegativesRankingLoss
|
11 |
+
base_model: BAAI/bge-small-en-v1.5
|
12 |
+
datasets:
|
13 |
+
- baconnier/finance_dataset_small_private
|
14 |
+
metrics:
|
15 |
+
- cosine_accuracy
|
16 |
+
- dot_accuracy
|
17 |
+
- manhattan_accuracy
|
18 |
+
- euclidean_accuracy
|
19 |
+
- max_accuracy
|
20 |
+
widget:
|
21 |
+
- source_sentence: What is the loan to value ratio (LTV) for Samantha's mortgage,
|
22 |
+
and how does it relate to the definition of LTV?
|
23 |
+
sentences:
|
24 |
+
- 'Loan amount = Home value - Down payment
|
25 |
+
|
26 |
+
Loan amount = $300,000 - $60,000 = $240,000
|
27 |
+
|
28 |
+
LTV = Loan amount ÷ Home value
|
29 |
+
|
30 |
+
LTV = $240,000 ÷ $300,000 = 0.8 or 80%
|
31 |
+
|
32 |
+
The LTV is the proportion of the property''s value financed by the loan.
|
33 |
+
|
34 |
+
The LTV for Samantha''s mortgage is 80%, which aligns with the definition of LTV
|
35 |
+
as the proportion of the property''s value financed by the loan.'
|
36 |
+
- 'LTV = Down payment ÷ Home value
|
37 |
+
|
38 |
+
LTV = $60,000 ÷ $300,000 = 0.2 or 20%
|
39 |
+
|
40 |
+
The LTV for Samantha''s mortgage is 20%.'
|
41 |
+
- What is a sale in the context of securities trading?
|
42 |
+
- source_sentence: What is greenmail, and how does it differ from a typical stock
|
43 |
+
acquisition?
|
44 |
+
sentences:
|
45 |
+
- 'Greenmail is when a company buys a small amount of stock in another company.
|
46 |
+
This is different from a normal stock purchase because the amount is small.
|
47 |
+
|
48 |
+
Greenmail is a small stock purchase, unlike a typical acquisition.'
|
49 |
+
- 'Greenmail is a corporate finance tactic where an unfriendly entity acquires a
|
50 |
+
large block of a target company''s stock, intending to force the target company
|
51 |
+
to buy back the shares at a significant premium to prevent a hostile takeover.
|
52 |
+
This differs from a typical stock acquisition, which is usually done for investment
|
53 |
+
purposes or to gain a smaller ownership stake, without the explicit intention
|
54 |
+
of forcing a buyback or threatening a takeover.
|
55 |
+
|
56 |
+
Greenmail is a tactic used by an unfriendly entity to force a target company to
|
57 |
+
buy back its shares at a premium to prevent a hostile takeover, while a typical
|
58 |
+
stock acquisition is done for investment or to gain a smaller ownership stake
|
59 |
+
without the intention of forcing a buyback or threatening a takeover.'
|
60 |
+
- What is the process of 'circling' in the context of underwriting a new share issue?
|
61 |
+
- source_sentence: 'ISOs are not taxed at grant or exercise. If shares are held for
|
62 |
+
2 years from grant and 1 year from exercise, the profit is taxed as long-term
|
63 |
+
capital gain. If holding periods are not met, it''s a disqualifying disposition,
|
64 |
+
and the profit is taxed as ordinary income.
|
65 |
+
|
66 |
+
ISOs are tax-free at grant and exercise. Profit is taxed as capital gain or ordinary
|
67 |
+
income based on holding periods.'
|
68 |
+
sentences:
|
69 |
+
- 'Incentive Stock Options have no tax benefits and are taxed as ordinary income
|
70 |
+
when exercised.
|
71 |
+
|
72 |
+
ISOs are taxed as ordinary income when exercised.'
|
73 |
+
- What are the key characteristics of Incentive Stock Options (ISOs) in terms of
|
74 |
+
taxation?
|
75 |
+
- What is a short squeeze, and how does it affect stock prices?
|
76 |
+
- source_sentence: What is a sell order, and how does it relate to Maggie's decision
|
77 |
+
to sell her XYZ Corporation shares?
|
78 |
+
sentences:
|
79 |
+
- 'A performance fund is a growth-oriented mutual fund that invests primarily in
|
80 |
+
stocks of companies with high growth potential and low dividend payouts. These
|
81 |
+
funds are typically associated with higher risk compared to other types of mutual
|
82 |
+
funds. For example, balanced funds invest in a mix of stocks and bonds and have
|
83 |
+
a more moderate risk profile, while money market funds invest in low-risk, short-term
|
84 |
+
securities and offer lower returns. Performance funds aim for higher capital appreciation
|
85 |
+
but come with increased volatility.
|
86 |
+
|
87 |
+
A performance fund is a high-risk, growth-oriented mutual fund that invests in
|
88 |
+
stocks with high growth potential and low dividends, aiming for capital appreciation.
|
89 |
+
It differs from balanced funds (moderate risk, mix of stocks and bonds) and money
|
90 |
+
market funds (low risk, short-term securities, lower returns).'
|
91 |
+
- 'A sell order is when you want to buy shares of a stock. Maggie wanted to sell
|
92 |
+
her XYZ shares because the price was going up.
|
93 |
+
|
94 |
+
Maggie placed a sell order to buy XYZ shares since the price was increasing.'
|
95 |
+
- 'A sell order is an instruction given by an investor to a broker to sell a specific
|
96 |
+
financial asset at a certain price or market condition. Maggie placed a sell order
|
97 |
+
for 1,000 shares of XYZ Corporation at a limit price of $50 per share because
|
98 |
+
she believed the company''s recent acquisition announcement would negatively impact
|
99 |
+
the stock price in the short term.
|
100 |
+
|
101 |
+
Maggie placed a sell order to sell 1,000 XYZ shares at $50 or higher due to her
|
102 |
+
expectation of a short-term price decline following the company''s acquisition
|
103 |
+
announcement.'
|
104 |
+
- source_sentence: What is industrial production, and how is it measured by the Federal
|
105 |
+
Reserve Board?
|
106 |
+
sentences:
|
107 |
+
- What is triangular arbitrage, and how does it allow traders to profit from price
|
108 |
+
discrepancies across three different markets?
|
109 |
+
- 'Industrial production is a statistic that measures the output of factories and
|
110 |
+
mines in the US. It is released by the Federal Reserve Board every quarter.
|
111 |
+
|
112 |
+
Industrial production measures factory and mine output, released quarterly by
|
113 |
+
the Fed.'
|
114 |
+
- 'Industrial production is a statistic determined by the Federal Reserve Board
|
115 |
+
that measures the total output of all US factories and mines on a monthly basis.
|
116 |
+
The Fed collects data from various government agencies and trade associations
|
117 |
+
to calculate the industrial production index, which serves as an important economic
|
118 |
+
indicator, providing insight into the health of the manufacturing and mining sectors.
|
119 |
+
|
120 |
+
Industrial production is a monthly statistic calculated by the Federal Reserve
|
121 |
+
Board, measuring the total output of US factories and mines using data from government
|
122 |
+
agencies and trade associations, serving as a key economic indicator for the manufacturing
|
123 |
+
and mining sectors.'
|
124 |
+
pipeline_tag: sentence-similarity
|
125 |
+
model-index:
|
126 |
+
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
|
127 |
+
results:
|
128 |
+
- task:
|
129 |
+
type: triplet
|
130 |
+
name: Triplet
|
131 |
+
dataset:
|
132 |
+
name: Finance Embedding Metric
|
133 |
+
type: Finance_Embedding_Metric
|
134 |
+
metrics:
|
135 |
+
- type: cosine_accuracy
|
136 |
+
value: 0.9791425260718424
|
137 |
+
name: Cosine Accuracy
|
138 |
+
- type: dot_accuracy
|
139 |
+
value: 0.02085747392815759
|
140 |
+
name: Dot Accuracy
|
141 |
+
- type: manhattan_accuracy
|
142 |
+
value: 0.9779837775202781
|
143 |
+
name: Manhattan Accuracy
|
144 |
+
- type: euclidean_accuracy
|
145 |
+
value: 0.9791425260718424
|
146 |
+
name: Euclidean Accuracy
|
147 |
+
- type: max_accuracy
|
148 |
+
value: 0.9791425260718424
|
149 |
+
name: Max Accuracy
|
150 |
+
---
|
151 |
+
|
152 |
+
# SentenceTransformer based on BAAI/bge-small-en-v1.5
|
153 |
+
|
154 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the [baconnier/finance_dataset_small_private](https://huggingface.co/datasets/baconnier/finance_dataset_small_private) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
155 |
+
|
156 |
+
## Model Details
|
157 |
+
|
158 |
+
### Model Description
|
159 |
+
- **Model Type:** Sentence Transformer
|
160 |
+
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
|
161 |
+
- **Maximum Sequence Length:** 512 tokens
|
162 |
+
- **Output Dimensionality:** 384 tokens
|
163 |
+
- **Similarity Function:** Cosine Similarity
|
164 |
+
- **Training Dataset:**
|
165 |
+
- [baconnier/finance_dataset_small_private](https://huggingface.co/datasets/baconnier/finance_dataset_small_private)
|
166 |
+
<!-- - **Language:** Unknown -->
|
167 |
+
<!-- - **License:** Unknown -->
|
168 |
+
|
169 |
+
### Model Sources
|
170 |
+
|
171 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
172 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
173 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
174 |
+
|
175 |
+
### Full Model Architecture
|
176 |
+
|
177 |
+
```
|
178 |
+
SentenceTransformer(
|
179 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
180 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
181 |
+
(2): Normalize()
|
182 |
+
)
|
183 |
+
```
|
184 |
+
|
185 |
+
## Usage
|
186 |
+
|
187 |
+
### Direct Usage (Sentence Transformers)
|
188 |
+
|
189 |
+
First install the Sentence Transformers library:
|
190 |
+
|
191 |
+
```bash
|
192 |
+
pip install -U sentence-transformers
|
193 |
+
```
|
194 |
+
|
195 |
+
Then you can load this model and run inference.
|
196 |
+
```python
|
197 |
+
from sentence_transformers import SentenceTransformer
|
198 |
+
|
199 |
+
# Download from the 🤗 Hub
|
200 |
+
model = SentenceTransformer("baconnier/Finance2_embedding_small_en-V1.5")
|
201 |
+
# Run inference
|
202 |
+
sentences = [
|
203 |
+
'What is industrial production, and how is it measured by the Federal Reserve Board?',
|
204 |
+
'Industrial production is a statistic determined by the Federal Reserve Board that measures the total output of all US factories and mines on a monthly basis. The Fed collects data from various government agencies and trade associations to calculate the industrial production index, which serves as an important economic indicator, providing insight into the health of the manufacturing and mining sectors.\nIndustrial production is a monthly statistic calculated by the Federal Reserve Board, measuring the total output of US factories and mines using data from government agencies and trade associations, serving as a key economic indicator for the manufacturing and mining sectors.',
|
205 |
+
'Industrial production is a statistic that measures the output of factories and mines in the US. It is released by the Federal Reserve Board every quarter.\nIndustrial production measures factory and mine output, released quarterly by the Fed.',
|
206 |
+
]
|
207 |
+
embeddings = model.encode(sentences)
|
208 |
+
print(embeddings.shape)
|
209 |
+
# [3, 384]
|
210 |
+
|
211 |
+
# Get the similarity scores for the embeddings
|
212 |
+
similarities = model.similarity(embeddings, embeddings)
|
213 |
+
print(similarities.shape)
|
214 |
+
# [3, 3]
|
215 |
+
```
|
216 |
+
|
217 |
+
<!--
|
218 |
+
### Direct Usage (Transformers)
|
219 |
+
|
220 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
221 |
+
|
222 |
+
</details>
|
223 |
+
-->
|
224 |
+
|
225 |
+
<!--
|
226 |
+
### Downstream Usage (Sentence Transformers)
|
227 |
+
|
228 |
+
You can finetune this model on your own dataset.
|
229 |
+
|
230 |
+
<details><summary>Click to expand</summary>
|
231 |
+
|
232 |
+
</details>
|
233 |
+
-->
|
234 |
+
|
235 |
+
<!--
|
236 |
+
### Out-of-Scope Use
|
237 |
+
|
238 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
239 |
+
-->
|
240 |
+
|
241 |
+
## Evaluation
|
242 |
+
|
243 |
+
### Metrics
|
244 |
+
|
245 |
+
#### Triplet
|
246 |
+
* Dataset: `Finance_Embedding_Metric`
|
247 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
248 |
+
|
249 |
+
| Metric | Value |
|
250 |
+
|:-------------------|:-----------|
|
251 |
+
| cosine_accuracy | 0.9791 |
|
252 |
+
| dot_accuracy | 0.0209 |
|
253 |
+
| manhattan_accuracy | 0.978 |
|
254 |
+
| euclidean_accuracy | 0.9791 |
|
255 |
+
| **max_accuracy** | **0.9791** |
|
256 |
+
|
257 |
+
<!--
|
258 |
+
## Bias, Risks and Limitations
|
259 |
+
|
260 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
261 |
+
-->
|
262 |
+
|
263 |
+
<!--
|
264 |
+
### Recommendations
|
265 |
+
|
266 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
267 |
+
-->
|
268 |
+
|
269 |
+
## Training Details
|
270 |
+
|
271 |
+
### Training Dataset
|
272 |
+
|
273 |
+
#### baconnier/finance_dataset_small_private
|
274 |
+
|
275 |
+
* Dataset: [baconnier/finance_dataset_small_private](https://huggingface.co/datasets/baconnier/finance_dataset_small_private) at [d7e6492](https://huggingface.co/datasets/baconnier/finance_dataset_small_private/tree/d7e6492d2b42d28b49bbe5f2c91bf93f04b570cb)
|
276 |
+
* Size: 15,525 training samples
|
277 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
278 |
+
* Approximate statistics based on the first 1000 samples:
|
279 |
+
| | anchor | positive | negative |
|
280 |
+
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
281 |
+
| type | string | string | string |
|
282 |
+
| details | <ul><li>min: 11 tokens</li><li>mean: 76.86 tokens</li><li>max: 304 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 79.23 tokens</li><li>max: 299 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.36 tokens</li><li>max: 155 tokens</li></ul> |
|
283 |
+
* Samples:
|
284 |
+
| anchor | positive | negative |
|
285 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
286 |
+
| <code>What is the key difference between a whole loan and a participation loan in terms of investment ownership?</code> | <code>The context clearly states that a whole loan is a type of investment where an investor purchases the entire mortgage loan from the original lender, becoming the sole owner. This is in contrast to a participation loan, where multiple investors share ownership of a single loan. Therefore, the key difference between a whole loan and a participation loan is that a whole loan is owned entirely by a single investor, while a participation loan involves shared ownership among multiple investors.<br>In a whole loan, a single investor owns the entire mortgage loan, while in a participation loan, multiple investors share ownership of the loan.</code> | <code>A whole loan is where multiple investors share ownership of a loan, while a participation loan is where an investor purchases the entire loan. Since the context states that a whole loan is where an investor purchases the entire mortgage loan and becomes the sole owner, this answer is incorrect.<br>A whole loan involves multiple investors, while a participation loan is owned by a single investor.</code> |
|
287 |
+
| <code>The role of an executor is to manage and distribute the assets of a deceased person's estate in accordance with their will. This includes tasks such as settling debts, filing tax returns, and ensuring that the assets are distributed to the beneficiaries as specified in the will. The executor is appointed by the court to carry out these duties. In the given context, Michael Johnson was nominated by John Smith in his will and appointed by the court as the executor of John's estate, which was valued at $5 million. Michael's responsibilities include dividing the estate equally among John's three children, donating $500,000 to the local animal shelter as per John's instructions, settling the $200,000 mortgage and $50,000 credit card debt, and filing John's final income tax return and paying any outstanding taxes.<br>An executor, appointed by the court, manages and distributes a deceased person's assets according to their will, settling debts, filing taxes, and ensuring the will is followed.</code> | <code>What is the role of an executor in managing a deceased person's estate?</code> | <code>An executor is someone who manages a deceased person's estate. They are responsible for distributing the assets according to the will. In this case, John Smith passed away and nominated Michael Johnson as the executor.<br>The executor is responsible for distributing the assets of a deceased person's estate according to their will.</code> |
|
288 |
+
| <code>What is a ticker tape, and how does it help investors?</code> | <code>A ticker tape is a computerized device that relays stock symbols, latest prices, and trading volumes to investors worldwide in real-time. It helps investors by providing up-to-the-second information about the stocks they are monitoring or interested in, enabling them to make quick and informed trading decisions based on the most current market data available.<br>A ticker tape is a real-time digital stock data display that empowers investors to make timely, data-driven trading decisions by providing the latest stock symbols, prices, and volumes.</code> | <code>A ticker tape is a device that shows stock information. It helps investors by providing some data about stocks.<br>A ticker tape provides stock data to investors.</code> |
|
289 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
290 |
+
```json
|
291 |
+
{
|
292 |
+
"scale": 20.0,
|
293 |
+
"similarity_fct": "cos_sim"
|
294 |
+
}
|
295 |
+
```
|
296 |
+
|
297 |
+
### Evaluation Dataset
|
298 |
+
|
299 |
+
#### baconnier/finance_dataset_small_private
|
300 |
+
|
301 |
+
* Dataset: [baconnier/finance_dataset_small_private](https://huggingface.co/datasets/baconnier/finance_dataset_small_private) at [d7e6492](https://huggingface.co/datasets/baconnier/finance_dataset_small_private/tree/d7e6492d2b42d28b49bbe5f2c91bf93f04b570cb)
|
302 |
+
* Size: 862 evaluation samples
|
303 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
304 |
+
* Approximate statistics based on the first 1000 samples:
|
305 |
+
| | anchor | positive | negative |
|
306 |
+
|:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
307 |
+
| type | string | string | string |
|
308 |
+
| details | <ul><li>min: 10 tokens</li><li>mean: 78.51 tokens</li><li>max: 286 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 76.02 tokens</li><li>max: 304 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 59.8 tokens</li><li>max: 271 tokens</li></ul> |
|
309 |
+
* Samples:
|
310 |
+
| anchor | positive | negative |
|
311 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
312 |
+
| <code>What is the underwriter's discount in the given IPO scenario, and how does it relate to the gross spread?</code> | <code>The underwriter's discount is the difference between the price the underwriter pays for the shares and the price at which they sell them to the public. In this case, the underwriter buys the shares at a 7% discount from the IPO price of $20 per share. The underwriter's discount is also known as the gross spread, as it represents the gross profit earned by the underwriter.<br>The underwriter's discount is 7%, which is equivalent to $1.40 per share. This is also known as the gross spread, representing the underwriter's gross profit.</code> | <code>The underwriter's discount is the difference between the price the underwriter pays for the shares and the price at which they sell them to the public. In this case, the underwriter buys the shares at a 7% discount, but the gross spread is not mentioned.<br>The underwriter's discount is 7%, but the gross spread is unknown.</code> |
|
313 |
+
| <code>What is the primary function of the equity market, and how does it relate to the stock market?</code> | <code>The equity market, synonymous with the stock market, serves as a platform for companies to issue ownership shares to raise capital for growth and expansion. Simultaneously, it allows investors to buy these shares, becoming part-owners of the companies and potentially earning returns through stock price appreciation and dividends. The equity market plays a vital role in the financial system by efficiently allocating capital to businesses and providing investment opportunities to individuals and institutions.<br>The equity market, or stock market, primarily functions as a mechanism for companies to raise capital by issuing ownership shares, while providing investors with opportunities to invest in these companies and earn returns, thus facilitating efficient capital allocation in the financial system.</code> | <code>The equity market is where ownership shares of companies are bought and sold. It allows companies to raise money by selling stocks. The stock market is the same as the equity market.<br>The equity market and the stock market are the same thing, where stocks are traded.</code> |
|
314 |
+
| <code>A selling syndicate is a group of investment banks that work together to underwrite and distribute a new security issue, such as stocks or bonds, to investors. The syndicate is typically led by one or more lead underwriters, who coordinate the distribution of the securities and set the offering price. In the case of XYZ Corporation, the selling syndicate is led by ABC Investment Bank and consists of 5 investment banks in total. The syndicate has agreed to purchase 10 million new shares from XYZ Corporation at a fixed price of $50 per share, which they will then sell to investors at a higher price of $55 per share. This process allows XYZ Corporation to raise capital by issuing new shares, while the selling syndicate earns a commission on the sale of the shares. The syndicate's role is to facilitate the distribution of the new shares to a wider pool of investors, helping to ensure the success of the offering.<br>A selling syndicate is a group of investment banks that jointly underwrite and distribute a new security issue to investors. In XYZ Corporation's case, the syndicate will purchase shares from the company at a fixed price and resell them to investors at a higher price, earning a commission and facilitating the successful distribution of the new shares.</code> | <code>What is a selling syndicate, and how does it function in the context of XYZ Corporation's new share issue?</code> | <code>A selling syndicate is a group of investment banks that work together to sell new shares of a company. In this case, XYZ Corporation has hired 5 investment banks to sell their new shares. The syndicate buys the shares from XYZ Corporation at a fixed price and then sells them to investors at a higher price.<br>A selling syndicate is a group of investment banks that jointly underwrite and distribute new shares of a company to investors, buying the shares at a fixed price and selling them at a higher price.</code> |
|
315 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
316 |
+
```json
|
317 |
+
{
|
318 |
+
"scale": 20.0,
|
319 |
+
"similarity_fct": "cos_sim"
|
320 |
+
}
|
321 |
+
```
|
322 |
+
|
323 |
+
### Training Hyperparameters
|
324 |
+
#### Non-Default Hyperparameters
|
325 |
+
|
326 |
+
- `eval_strategy`: steps
|
327 |
+
- `per_device_train_batch_size`: 16
|
328 |
+
- `per_device_eval_batch_size`: 16
|
329 |
+
- `num_train_epochs`: 1
|
330 |
+
- `warmup_ratio`: 0.1
|
331 |
+
- `bf16`: True
|
332 |
+
- `batch_sampler`: no_duplicates
|
333 |
+
|
334 |
+
#### All Hyperparameters
|
335 |
+
<details><summary>Click to expand</summary>
|
336 |
+
|
337 |
+
- `overwrite_output_dir`: False
|
338 |
+
- `do_predict`: False
|
339 |
+
- `eval_strategy`: steps
|
340 |
+
- `prediction_loss_only`: True
|
341 |
+
- `per_device_train_batch_size`: 16
|
342 |
+
- `per_device_eval_batch_size`: 16
|
343 |
+
- `per_gpu_train_batch_size`: None
|
344 |
+
- `per_gpu_eval_batch_size`: None
|
345 |
+
- `gradient_accumulation_steps`: 1
|
346 |
+
- `eval_accumulation_steps`: None
|
347 |
+
- `learning_rate`: 5e-05
|
348 |
+
- `weight_decay`: 0.0
|
349 |
+
- `adam_beta1`: 0.9
|
350 |
+
- `adam_beta2`: 0.999
|
351 |
+
- `adam_epsilon`: 1e-08
|
352 |
+
- `max_grad_norm`: 1.0
|
353 |
+
- `num_train_epochs`: 1
|
354 |
+
- `max_steps`: -1
|
355 |
+
- `lr_scheduler_type`: linear
|
356 |
+
- `lr_scheduler_kwargs`: {}
|
357 |
+
- `warmup_ratio`: 0.1
|
358 |
+
- `warmup_steps`: 0
|
359 |
+
- `log_level`: passive
|
360 |
+
- `log_level_replica`: warning
|
361 |
+
- `log_on_each_node`: True
|
362 |
+
- `logging_nan_inf_filter`: True
|
363 |
+
- `save_safetensors`: True
|
364 |
+
- `save_on_each_node`: False
|
365 |
+
- `save_only_model`: False
|
366 |
+
- `restore_callback_states_from_checkpoint`: False
|
367 |
+
- `no_cuda`: False
|
368 |
+
- `use_cpu`: False
|
369 |
+
- `use_mps_device`: False
|
370 |
+
- `seed`: 42
|
371 |
+
- `data_seed`: None
|
372 |
+
- `jit_mode_eval`: False
|
373 |
+
- `use_ipex`: False
|
374 |
+
- `bf16`: True
|
375 |
+
- `fp16`: False
|
376 |
+
- `fp16_opt_level`: O1
|
377 |
+
- `half_precision_backend`: auto
|
378 |
+
- `bf16_full_eval`: False
|
379 |
+
- `fp16_full_eval`: False
|
380 |
+
- `tf32`: None
|
381 |
+
- `local_rank`: 0
|
382 |
+
- `ddp_backend`: None
|
383 |
+
- `tpu_num_cores`: None
|
384 |
+
- `tpu_metrics_debug`: False
|
385 |
+
- `debug`: []
|
386 |
+
- `dataloader_drop_last`: False
|
387 |
+
- `dataloader_num_workers`: 0
|
388 |
+
- `dataloader_prefetch_factor`: None
|
389 |
+
- `past_index`: -1
|
390 |
+
- `disable_tqdm`: False
|
391 |
+
- `remove_unused_columns`: True
|
392 |
+
- `label_names`: None
|
393 |
+
- `load_best_model_at_end`: False
|
394 |
+
- `ignore_data_skip`: False
|
395 |
+
- `fsdp`: []
|
396 |
+
- `fsdp_min_num_params`: 0
|
397 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
398 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
399 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
400 |
+
- `deepspeed`: None
|
401 |
+
- `label_smoothing_factor`: 0.0
|
402 |
+
- `optim`: adamw_torch
|
403 |
+
- `optim_args`: None
|
404 |
+
- `adafactor`: False
|
405 |
+
- `group_by_length`: False
|
406 |
+
- `length_column_name`: length
|
407 |
+
- `ddp_find_unused_parameters`: None
|
408 |
+
- `ddp_bucket_cap_mb`: None
|
409 |
+
- `ddp_broadcast_buffers`: False
|
410 |
+
- `dataloader_pin_memory`: True
|
411 |
+
- `dataloader_persistent_workers`: False
|
412 |
+
- `skip_memory_metrics`: True
|
413 |
+
- `use_legacy_prediction_loop`: False
|
414 |
+
- `push_to_hub`: False
|
415 |
+
- `resume_from_checkpoint`: None
|
416 |
+
- `hub_model_id`: None
|
417 |
+
- `hub_strategy`: every_save
|
418 |
+
- `hub_private_repo`: False
|
419 |
+
- `hub_always_push`: False
|
420 |
+
- `gradient_checkpointing`: False
|
421 |
+
- `gradient_checkpointing_kwargs`: None
|
422 |
+
- `include_inputs_for_metrics`: False
|
423 |
+
- `eval_do_concat_batches`: True
|
424 |
+
- `fp16_backend`: auto
|
425 |
+
- `push_to_hub_model_id`: None
|
426 |
+
- `push_to_hub_organization`: None
|
427 |
+
- `mp_parameters`:
|
428 |
+
- `auto_find_batch_size`: False
|
429 |
+
- `full_determinism`: False
|
430 |
+
- `torchdynamo`: None
|
431 |
+
- `ray_scope`: last
|
432 |
+
- `ddp_timeout`: 1800
|
433 |
+
- `torch_compile`: False
|
434 |
+
- `torch_compile_backend`: None
|
435 |
+
- `torch_compile_mode`: None
|
436 |
+
- `dispatch_batches`: None
|
437 |
+
- `split_batches`: None
|
438 |
+
- `include_tokens_per_second`: False
|
439 |
+
- `include_num_input_tokens_seen`: False
|
440 |
+
- `neftune_noise_alpha`: None
|
441 |
+
- `optim_target_modules`: None
|
442 |
+
- `batch_eval_metrics`: False
|
443 |
+
- `batch_sampler`: no_duplicates
|
444 |
+
- `multi_dataset_batch_sampler`: proportional
|
445 |
+
|
446 |
+
</details>
|
447 |
+
|
448 |
+
### Training Logs
|
449 |
+
| Epoch | Step | Training Loss | loss | Finance_Embedding_Metric_max_accuracy |
|
450 |
+
|:------:|:----:|:-------------:|:------:|:-------------------------------------:|
|
451 |
+
| 0.0103 | 10 | 0.9918 | - | - |
|
452 |
+
| 0.0206 | 20 | 0.8866 | - | - |
|
453 |
+
| 0.0309 | 30 | 0.7545 | - | - |
|
454 |
+
| 0.0412 | 40 | 0.6731 | - | - |
|
455 |
+
| 0.0515 | 50 | 0.2897 | - | - |
|
456 |
+
| 0.0618 | 60 | 0.214 | - | - |
|
457 |
+
| 0.0721 | 70 | 0.1677 | - | - |
|
458 |
+
| 0.0824 | 80 | 0.0479 | - | - |
|
459 |
+
| 0.0927 | 90 | 0.191 | - | - |
|
460 |
+
| 0.1030 | 100 | 0.1188 | - | - |
|
461 |
+
| 0.1133 | 110 | 0.1909 | - | - |
|
462 |
+
| 0.1236 | 120 | 0.0486 | - | - |
|
463 |
+
| 0.1339 | 130 | 0.0812 | - | - |
|
464 |
+
| 0.1442 | 140 | 0.1282 | - | - |
|
465 |
+
| 0.1545 | 150 | 0.15 | - | - |
|
466 |
+
| 0.1648 | 160 | 0.0605 | - | - |
|
467 |
+
| 0.1751 | 170 | 0.0431 | - | - |
|
468 |
+
| 0.1854 | 180 | 0.0613 | - | - |
|
469 |
+
| 0.1957 | 190 | 0.0407 | - | - |
|
470 |
+
| 0.2008 | 195 | - | 0.0605 | - |
|
471 |
+
| 0.2060 | 200 | 0.0567 | - | - |
|
472 |
+
| 0.2163 | 210 | 0.0294 | - | - |
|
473 |
+
| 0.2266 | 220 | 0.0284 | - | - |
|
474 |
+
| 0.2369 | 230 | 0.0444 | - | - |
|
475 |
+
| 0.2472 | 240 | 0.0559 | - | - |
|
476 |
+
| 0.2575 | 250 | 0.0301 | - | - |
|
477 |
+
| 0.2678 | 260 | 0.0225 | - | - |
|
478 |
+
| 0.2781 | 270 | 0.0256 | - | - |
|
479 |
+
| 0.2884 | 280 | 0.016 | - | - |
|
480 |
+
| 0.2987 | 290 | 0.0063 | - | - |
|
481 |
+
| 0.3090 | 300 | 0.0442 | - | - |
|
482 |
+
| 0.3193 | 310 | 0.0425 | - | - |
|
483 |
+
| 0.3296 | 320 | 0.0534 | - | - |
|
484 |
+
| 0.3399 | 330 | 0.0264 | - | - |
|
485 |
+
| 0.3502 | 340 | 0.043 | - | - |
|
486 |
+
| 0.3605 | 350 | 0.035 | - | - |
|
487 |
+
| 0.3708 | 360 | 0.0212 | - | - |
|
488 |
+
| 0.3811 | 370 | 0.0171 | - | - |
|
489 |
+
| 0.3913 | 380 | 0.0497 | - | - |
|
490 |
+
| 0.4016 | 390 | 0.0294 | 0.0381 | - |
|
491 |
+
| 0.4119 | 400 | 0.0317 | - | - |
|
492 |
+
| 0.4222 | 410 | 0.0571 | - | - |
|
493 |
+
| 0.4325 | 420 | 0.0251 | - | - |
|
494 |
+
| 0.4428 | 430 | 0.0162 | - | - |
|
495 |
+
| 0.4531 | 440 | 0.0504 | - | - |
|
496 |
+
| 0.4634 | 450 | 0.0257 | - | - |
|
497 |
+
| 0.4737 | 460 | 0.0185 | - | - |
|
498 |
+
| 0.4840 | 470 | 0.0414 | - | - |
|
499 |
+
| 0.4943 | 480 | 0.016 | - | - |
|
500 |
+
| 0.5046 | 490 | 0.0432 | - | - |
|
501 |
+
| 0.5149 | 500 | 0.0369 | - | - |
|
502 |
+
| 0.5252 | 510 | 0.0115 | - | - |
|
503 |
+
| 0.5355 | 520 | 0.034 | - | - |
|
504 |
+
| 0.5458 | 530 | 0.0143 | - | - |
|
505 |
+
| 0.5561 | 540 | 0.0225 | - | - |
|
506 |
+
| 0.5664 | 550 | 0.0185 | - | - |
|
507 |
+
| 0.5767 | 560 | 0.0085 | - | - |
|
508 |
+
| 0.5870 | 570 | 0.0262 | - | - |
|
509 |
+
| 0.5973 | 580 | 0.0465 | - | - |
|
510 |
+
| 0.6025 | 585 | - | 0.0541 | - |
|
511 |
+
| 0.6076 | 590 | 0.0121 | - | - |
|
512 |
+
| 0.6179 | 600 | 0.0256 | - | - |
|
513 |
+
| 0.6282 | 610 | 0.0203 | - | - |
|
514 |
+
| 0.6385 | 620 | 0.0301 | - | - |
|
515 |
+
| 0.6488 | 630 | 0.017 | - | - |
|
516 |
+
| 0.6591 | 640 | 0.0321 | - | - |
|
517 |
+
| 0.6694 | 650 | 0.0087 | - | - |
|
518 |
+
| 0.6797 | 660 | 0.0276 | - | - |
|
519 |
+
| 0.6900 | 670 | 0.0043 | - | - |
|
520 |
+
| 0.7003 | 680 | 0.0063 | - | - |
|
521 |
+
| 0.7106 | 690 | 0.0293 | - | - |
|
522 |
+
| 0.7209 | 700 | 0.01 | - | - |
|
523 |
+
| 0.7312 | 710 | 0.0121 | - | - |
|
524 |
+
| 0.7415 | 720 | 0.0164 | - | - |
|
525 |
+
| 0.7518 | 730 | 0.0052 | - | - |
|
526 |
+
| 0.7621 | 740 | 0.0271 | - | - |
|
527 |
+
| 0.7724 | 750 | 0.0363 | - | - |
|
528 |
+
| 0.7827 | 760 | 0.0523 | - | - |
|
529 |
+
| 0.7930 | 770 | 0.0153 | - | - |
|
530 |
+
| 0.8033 | 780 | 0.015 | 0.0513 | - |
|
531 |
+
| 0.8136 | 790 | 0.0042 | - | - |
|
532 |
+
| 0.8239 | 800 | 0.0088 | - | - |
|
533 |
+
| 0.8342 | 810 | 0.0217 | - | - |
|
534 |
+
| 0.8445 | 820 | 0.0345 | - | - |
|
535 |
+
| 0.8548 | 830 | 0.01 | - | - |
|
536 |
+
| 0.8651 | 840 | 0.0243 | - | - |
|
537 |
+
| 0.8754 | 850 | 0.0074 | - | - |
|
538 |
+
| 0.8857 | 860 | 0.0082 | - | - |
|
539 |
+
| 0.8960 | 870 | 0.0104 | - | - |
|
540 |
+
| 0.9063 | 880 | 0.0078 | - | - |
|
541 |
+
| 0.9166 | 890 | 0.0163 | - | - |
|
542 |
+
| 0.9269 | 900 | 0.0168 | - | - |
|
543 |
+
| 0.9372 | 910 | 0.0088 | - | - |
|
544 |
+
| 0.9475 | 920 | 0.0186 | - | - |
|
545 |
+
| 0.9578 | 930 | 0.0055 | - | - |
|
546 |
+
| 0.9681 | 940 | 0.0142 | - | - |
|
547 |
+
| 0.9784 | 950 | 0.0251 | - | - |
|
548 |
+
| 0.9887 | 960 | 0.0468 | - | - |
|
549 |
+
| 0.9990 | 970 | 0.0031 | - | - |
|
550 |
+
| 1.0 | 971 | - | - | 0.9791 |
|
551 |
+
|
552 |
+
|
553 |
+
### Framework Versions
|
554 |
+
- Python: 3.10.12
|
555 |
+
- Sentence Transformers: 3.0.1
|
556 |
+
- Transformers: 4.41.2
|
557 |
+
- PyTorch: 2.3.0+cu121
|
558 |
+
- Accelerate: 0.31.0
|
559 |
+
- Datasets: 2.19.2
|
560 |
+
- Tokenizers: 0.19.1
|
561 |
+
|
562 |
+
## Citation
|
563 |
+
|
564 |
+
### BibTeX
|
565 |
+
|
566 |
+
#### Sentence Transformers
|
567 |
+
```bibtex
|
568 |
+
@inproceedings{reimers-2019-sentence-bert,
|
569 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
570 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
571 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
572 |
+
month = "11",
|
573 |
+
year = "2019",
|
574 |
+
publisher = "Association for Computational Linguistics",
|
575 |
+
url = "https://arxiv.org/abs/1908.10084",
|
576 |
+
}
|
577 |
+
```
|
578 |
+
|
579 |
+
#### MultipleNegativesRankingLoss
|
580 |
+
```bibtex
|
581 |
+
@misc{henderson2017efficient,
|
582 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
583 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
584 |
+
year={2017},
|
585 |
+
eprint={1705.00652},
|
586 |
+
archivePrefix={arXiv},
|
587 |
+
primaryClass={cs.CL}
|
588 |
+
}
|
589 |
+
```
|
590 |
+
|
591 |
+
<!--
|
592 |
+
## Glossary
|
593 |
+
|
594 |
+
*Clearly define terms in order to be accessible across audiences.*
|
595 |
+
-->
|
596 |
+
|
597 |
+
<!--
|
598 |
+
## Model Card Authors
|
599 |
+
|
600 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
601 |
+
-->
|
602 |
+
|
603 |
+
<!--
|
604 |
+
## Model Card Contact
|
605 |
+
|
606 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
607 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-small-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.41.2",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2373644feb8c22b76053c00166da47ab13ab96a06a4bb7c3c4544c334970a701
|
3 |
+
size 133462128
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|