|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers import PretrainedConfig |
|
|
|
|
|
class Ernie4_5_Config(PretrainedConfig): |
|
""" |
|
Configuration class. |
|
|
|
This class stores the configuration of an Ernie model, defining the model architecture. |
|
It inherits from PretrainedConfig and can be used to control model outputs. |
|
""" |
|
|
|
model_type = "ernie4_5" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
base_model_tp_plan = { |
|
"layers.*.self_attn.q_proj": "colwise", |
|
"layers.*.self_attn.k_proj": "colwise", |
|
"layers.*.self_attn.v_proj": "colwise", |
|
"layers.*.self_attn.o_proj": "rowwise", |
|
"layers.*.mlp.gate_proj": "colwise", |
|
"layers.*.mlp.up_proj": "colwise", |
|
"layers.*.mlp.down_proj": "rowwise", |
|
} |
|
base_model_pp_plan = { |
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]), |
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]), |
|
"norm": (["hidden_states"], ["hidden_states"]), |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=32000, |
|
hidden_size=768, |
|
intermediate_size=11008, |
|
max_position_embeddings=32768, |
|
num_hidden_layers=2, |
|
num_attention_heads=2, |
|
rms_norm_eps=1e-6, |
|
use_cache=False, |
|
use_flash_attention=False, |
|
pad_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
use_bias=False, |
|
rope_theta=10000, |
|
weight_share_add_bias=True, |
|
ignored_index=-100, |
|
attention_probs_dropout_prob=0.0, |
|
hidden_dropout_prob=0.0, |
|
compression_ratio: float = 1.0, |
|
num_key_value_heads=None, |
|
max_sequence_length=None, |
|
**kwargs, |
|
): |
|
""" |
|
Initialize configuration with default or specified parameters. |
|
|
|
Args: |
|
vocab_size (int): Size of the vocabulary (number of unique tokens) |
|
hidden_size (int): Dimensionality of the encoder layers and the pooler layer |
|
intermediate_size (int): Dimensionality of the "intermediate" (feed-forward) layer |
|
max_position_embeddings (int): Maximum sequence length the model can handle |
|
num_hidden_layers (int): Number of hidden layers in the Transformer encoder |
|
num_attention_heads (int): Number of attention heads for each attention layer |
|
rms_norm_eps (float): The epsilon used by the RMS normalization layers |
|
use_cache (bool): Whether to use caching for faster generation (decoding) |
|
use_flash_attention (bool): Whether to use FlashAttention for optimized attention computation |
|
pad_token_id (int): Token ID used for padding sequences |
|
bos_token_id (int): Token ID used for beginning-of-sequence |
|
eos_token_id (int): Token ID used for end-of-sequence |
|
use_bias (bool): Whether to use bias terms in linear layers |
|
rope_theta (float): The base period of the RoPE embeddings |
|
weight_share_add_bias (bool): Whether to share bias weights in certain layers |
|
ignored_index (int): Target value that is ignored during loss computation |
|
attention_probs_dropout_prob (float): Dropout probability for attention weights |
|
hidden_dropout_prob (float): Dropout probability for hidden layers |
|
compression_ratio (float): Ratio for KV cache compression (1.0 = no compression) |
|
num_key_value_heads (int): Number of key/value heads (for Grouped Query Attention) |
|
max_sequence_length (int): Maximum sequence length for positional embeddings |
|
**kwargs: Additional keyword arguments passed to parent class |
|
""" |
|
|
|
|
|
if "tie_word_embeddings" not in kwargs: |
|
kwargs["tie_word_embeddings"] = False |
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
**kwargs, |
|
) |
|
self.vocab_size = vocab_size |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.use_flash_attention = use_flash_attention |
|
self.pad_token_id = pad_token_id |
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.use_bias = use_bias |
|
self.weight_share_add_bias = weight_share_add_bias |
|
self.rope_theta = rope_theta |
|
self.ignored_index = ignored_index |
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob |
|
self.hidden_dropout_prob = hidden_dropout_prob |
|
self.compression_ratio = compression_ratio |
|
self.num_key_value_heads = num_key_value_heads |
|
self.max_sequence_length = max_sequence_length |
|
|