|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.attention import SDPBackend, sdpa_kernel |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
) |
|
from transformers.utils import logging |
|
|
|
from .configuration_ernie4_5 import Ernie4_5_Config |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class Ernie4_5_RMSNorm(nn.Module): |
|
""" |
|
Root Mean Square Layer Normalization (Ernie4_5_RMSNorm) implementation. |
|
|
|
Ernie4_5_RMSNorm is a simplified version of LayerNorm that focuses on the root mean square of inputs, |
|
omitting the mean-centering operation. This provides computational efficiency while maintaining |
|
good performance. |
|
""" |
|
|
|
def __init__(self, config): |
|
""" |
|
Initialize Ernie4_5_RMSNorm layer. |
|
|
|
Args: |
|
config: Model configuration. |
|
""" |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.weight = nn.Parameter( |
|
torch.ones(self.hidden_size, dtype=torch.get_default_dtype()) |
|
) |
|
self.variance_epsilon = config.rms_norm_eps |
|
|
|
def forward(self, hidden_states): |
|
""" |
|
Apply RMS normalization to input hidden states. |
|
|
|
Args: |
|
hidden_states (Tensor): Input tensor of shape [batch_size, seq_len, hidden_size] |
|
|
|
Returns: |
|
Tensor: Normalized output tensor of same shape as input |
|
|
|
Note: |
|
- computes Ernie4_5_RMSNorm manually: |
|
1. Compute variance of features |
|
2. Apply reciprocal square root normalization |
|
3. Scale by learned weight parameter |
|
- Maintains original dtype for numerical stability during computation |
|
""" |
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = torch.rsqrt(variance + self.variance_epsilon) * hidden_states |
|
return hidden_states.to(self.weight.dtype) * self.weight |
|
|
|
|
|
class Ernie4_5_RopeEmbedding(nn.Module): |
|
""" |
|
Rotary Position Embedding (RoPE) implementation for transformer models. |
|
|
|
RoPE encodes absolute positional information with rotation matrices and |
|
naturally incorporates relative position information in self-attention. |
|
|
|
Args: |
|
head_dim (int): Dimension size of each attention head |
|
compression_ratio (float, optional): Sequence length compression ratio. Defaults to 1.0. |
|
base (int, optional): Base value for frequency calculation. Defaults to 10000. |
|
|
|
Attributes: |
|
head_dim (int): Dimension size of each attention head |
|
compression_ratio (float): Sequence length compression factor |
|
base (int): Base value for frequency calculation |
|
""" |
|
|
|
def __init__(self, head_dim, compression_ratio=1.0, base=10000): |
|
""" |
|
Initialize RoPE embedding layer. |
|
|
|
Args: |
|
head_dim: Dimension of each attention head |
|
compression_ratio: Scaling factor for position indices |
|
base: Base value for frequency calculation |
|
""" |
|
super().__init__() |
|
self.head_dim = head_dim |
|
self.compression_ratio = compression_ratio |
|
self.base = base |
|
|
|
def forward(self, seq_length, position_ids=None): |
|
""" |
|
Compute rotary position embeddings for given sequence length. |
|
|
|
Args: |
|
seq_length (int): Maximum sequence length |
|
position_ids (Tensor, optional): Custom position indices. Defaults to None. |
|
|
|
Returns: |
|
Tensor: Rotary position embeddings of shape [1, 1, seq_length, head_dim] |
|
""" |
|
indices = torch.arange(0, self.head_dim, 2, dtype=torch.float32) |
|
indices = 1 / self.base ** (indices / self.head_dim) |
|
if position_ids is None: |
|
position_ids = torch.arange( |
|
0, seq_length, 1, dtype=torch.float32 |
|
).unsqueeze(1) |
|
position_ids = position_ids / self.compression_ratio |
|
sinusoid_inp = position_ids * indices.unsqueeze(0) |
|
else: |
|
position_ids = position_ids / self.compression_ratio |
|
seq_length = position_ids.shape[-1] |
|
sinusoid_inp = position_ids.unsqueeze(-1).to( |
|
torch.float32 |
|
) * indices.unsqueeze(0) |
|
pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1) |
|
pos_emb = pos_emb.view(-1, 1, seq_length, self.head_dim) |
|
pos_emb = pos_emb.detach() |
|
return pos_emb |
|
|
|
def apply_rotary(self, rp, q, k): |
|
""" |
|
Apply rotary position embeddings to queries and keys. |
|
|
|
Args: |
|
rp (Tensor): Rotary position embeddings |
|
q (Tensor): Query tensor [batch, heads, seq_len, dim] |
|
k (Tensor): Key tensor [batch, heads, seq_len, dim] |
|
|
|
Returns: |
|
Tuple[Tensor, Tensor]: Rotated queries and keys |
|
""" |
|
sin, cos = torch.chunk(rp.to(q.device), 2, dim=-1) |
|
|
|
sin_pos = torch.stack([sin, sin], dim=-1).reshape(rp.shape) |
|
|
|
cos_pos = torch.stack([cos, cos], dim=-1).reshape(rp.shape) |
|
|
|
rotate_half_q = torch.stack( |
|
[-q[:, :, :, 1::2], q[:, :, :, 0::2]], dim=-1 |
|
).reshape(q.shape) |
|
query = (q.to(torch.float32) * cos_pos) + ( |
|
rotate_half_q.to(torch.float32) * sin_pos |
|
) |
|
|
|
rotate_half_k = torch.stack( |
|
[-k[:, :, :, 1::2], k[:, :, :, 0::2]], dim=-1 |
|
).reshape(k.shape) |
|
key = (k.to(torch.float32) * cos_pos) + ( |
|
rotate_half_k.to(torch.float32) * sin_pos |
|
) |
|
return query, key |
|
|
|
|
|
class Ernie4_5_FusedDropoutImpl(nn.Module): |
|
""" |
|
Fused dropout implementation with residual connection support. |
|
|
|
This layer combines dropout and residual addition in a single operation for better performance, |
|
particularly on GPU devices. The dropout is conditionally applied based on the probability. |
|
|
|
Args: |
|
prob (float): Dropout probability (between 0 and 1) |
|
|
|
Attributes: |
|
prob (float): Stores the dropout probability |
|
dropout (nn.Dropout): The actual dropout layer instance |
|
""" |
|
|
|
def __init__(self, prob): |
|
""" |
|
Initialize the fused dropout layer. |
|
|
|
Args: |
|
prob (float): Dropout probability (0 means no dropout) |
|
""" |
|
super().__init__() |
|
self.prob = prob |
|
self.dropout = nn.Dropout(p=prob) |
|
|
|
def forward(self, x, y): |
|
""" |
|
Forward pass of the fused dropout layer. |
|
|
|
Args: |
|
x (Tensor): Input tensor to potentially apply dropout |
|
y (Tensor): Residual tensor to add to the (possibly dropped out) x |
|
|
|
Returns: |
|
Tensor: Result of x (with optional dropout) + y |
|
""" |
|
if self.prob > 0: |
|
x = self.dropout(x) |
|
output = x + y |
|
|
|
return output |
|
|
|
|
|
class Ernie4_5_MLP(nn.Module): |
|
""" |
|
Ernie4_5_MLP - Gated Multi-Layer Perceptron module used in Ernie model. |
|
""" |
|
|
|
def __init__(self, config, layer_idx=0): |
|
""" |
|
Initialize the MLP module with configuration options. |
|
|
|
Args: |
|
config: Model configurations. |
|
layer_idx (int): Index of current layer (default: 0) |
|
""" |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
|
|
self.gate_proj = nn.Linear( |
|
self.hidden_size, self.intermediate_size, bias=config.use_bias |
|
) |
|
self.up_proj = nn.Linear( |
|
self.hidden_size, self.intermediate_size, bias=config.use_bias |
|
) |
|
self.down_proj = nn.Linear( |
|
self.intermediate_size, self.hidden_size, bias=config.use_bias |
|
) |
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x (Tensor): shape [batch_size, seq_len, hidden_size] |
|
|
|
Returns: |
|
Tensor: shape [batch_size, seq_len, hidden_size] |
|
""" |
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
|
|
class Ernie4_5_Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config, layer_idx=0): |
|
"""Initialize the attention layer. |
|
|
|
Args: |
|
config: Model configuration. |
|
layer_idx (int, optional): Index in transformer stack. Defaults to 0. |
|
""" |
|
super().__init__() |
|
self.layer_idx = layer_idx |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
|
|
if config.head_dim is None: |
|
self.head_dim = self.hidden_size // self.num_heads |
|
else: |
|
self.head_dim = config.head_dim |
|
|
|
self.is_gqa = ( |
|
self.num_key_value_heads is not None |
|
and self.num_key_value_heads != self.num_heads |
|
) |
|
|
|
if self.is_gqa: |
|
logger.info( |
|
f"use GQA - num_heads: {self.num_heads}- num_key_value_heads: {self.num_key_value_heads}" |
|
) |
|
assert ( |
|
self.num_heads % self.num_key_value_heads == 0 |
|
), f"num_heads: {self.num_heads}, num_key_value_heads: {self.num_key_value_heads}" |
|
kv_hidden_size = self.head_dim * self.num_key_value_heads |
|
q_hidden_size = self.head_dim * self.num_heads |
|
else: |
|
q_hidden_size = kv_hidden_size = self.head_dim * self.num_heads |
|
|
|
self.q_proj = nn.Linear(self.hidden_size, q_hidden_size, bias=config.use_bias) |
|
self.k_proj = nn.Linear(self.hidden_size, kv_hidden_size, bias=config.use_bias) |
|
self.v_proj = nn.Linear(self.hidden_size, kv_hidden_size, bias=config.use_bias) |
|
self.o_proj = nn.Linear(q_hidden_size, self.hidden_size, bias=config.use_bias) |
|
|
|
self.rotary_emb = Ernie4_5_RopeEmbedding( |
|
self.head_dim, |
|
compression_ratio=config.compression_ratio, |
|
base=config.rope_theta, |
|
) |
|
self.config = config |
|
|
|
self.set_attn_func() |
|
|
|
def set_attn_func(self): |
|
"""Configure attention function based on settings. |
|
|
|
Selects between flash/core attention. |
|
""" |
|
config = self.config |
|
if config.use_flash_attention: |
|
self.attn_func = self._flash_attention_wrapper |
|
else: |
|
self.attn_func = self.core_attn |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
attn_mask_start_row_indices: Optional[torch.Tensor] = None, |
|
position_ids: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
token_type_ids: Optional[Tuple[torch.Tensor]] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Compute attention outputs. |
|
|
|
Args: |
|
hidden_states (torch.Tensor): Input tensor [bsz, seq_len, hidden_size] |
|
past_key_value (Optional[Tuple[torch.Tensor, torch.Tensor]]): Cached key/value states |
|
attention_mask (Optional[torch.Tensor]): Attention mask tensor |
|
attn_mask_start_row_indices (Optional[torch.Tensor]): Variable length attention indices |
|
position_ids (Optional[torch.Tensor]): Position indices for RoPE |
|
output_attentions (bool): Return attention weights if True |
|
use_cache (bool): Cache key/value states if True |
|
|
|
Returns: |
|
Tuple containing: |
|
- attention_output: [bsz, seq_len, hidden_size] |
|
- attention_weights: Optional attention probabilities |
|
- updated_key_value_cache: Optional updated cache |
|
""" |
|
if token_type_ids is not None: |
|
token_type_ids = token_type_ids[:, :-1] |
|
|
|
bsz, q_len, _ = hidden_states.shape |
|
|
|
query_states = self.q_proj(hidden_states).reshape( |
|
[bsz, q_len, -1, self.head_dim] |
|
) |
|
key_states = self.k_proj(hidden_states).reshape([bsz, q_len, -1, self.head_dim]) |
|
value_states = self.v_proj(hidden_states).reshape( |
|
[bsz, q_len, -1, self.head_dim] |
|
) |
|
|
|
attn_output, attn_weights, past_key_value = self.rope_attn( |
|
query_states=query_states, |
|
key_states=key_states, |
|
value_states=value_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
attn_mask_start_row_indices=attn_mask_start_row_indices, |
|
) |
|
|
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def repeat_kv(self, hidden_states, n_rep): |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand( |
|
batch, num_key_value_heads, n_rep, slen, head_dim |
|
) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
def _flash_attention_wrapper( |
|
self, |
|
q, |
|
k, |
|
v, |
|
attention_mask=None, |
|
attn_mask_start_row_indices=None, |
|
seq_length=None, |
|
): |
|
"""Wrapper for flash attention implementation. |
|
|
|
Args: |
|
q (torch.Tensor): Query tensor |
|
k (torch.Tensor): Key tensor |
|
v (torch.Tensor): Value tensor |
|
attention_mask (Optional[torch.Tensor]): Attention mask |
|
attn_mask_start_row_indices (Optional[torch.Tensor]): Variable length indices |
|
seq_length (Optional[int]): Sequence length |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor]: Attention output and weights |
|
""" |
|
q = q.transpose(1, 2) |
|
k = k.transpose(1, 2) |
|
v = v.transpose(1, 2) |
|
|
|
with sdpa_kernel(SDPBackend.FLASH_ATTENTION): |
|
out = F.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
attn_mask=attention_mask, |
|
dropout_p=self.config.attention_probs_dropout_prob, |
|
is_causal=attention_mask is None and q.shape[1] != 1, |
|
scale=1 |
|
/ (getattr(self.config, "scale_qk_coeff", 1.0) * self.head_dim**0.5), |
|
enable_gqa=self.is_gqa, |
|
) |
|
out = out.transpose(1, 2) |
|
out = out.contiguous().view(out.size(0), out.size(1), -1) |
|
|
|
return out, None |
|
|
|
def core_attn( |
|
self, |
|
q, |
|
k, |
|
v, |
|
attention_mask=None, |
|
attn_mask_start_row_indices=None, |
|
seq_length=None, |
|
): |
|
"""Standard self-attention implementation. |
|
|
|
Args: |
|
q (torch.Tensor): Query tensor |
|
k (torch.Tensor): Key tensor |
|
v (torch.Tensor): Value tensor |
|
attention_mask (Optional[torch.Tensor]): Attention mask |
|
attn_mask_start_row_indices (Optional[torch.Tensor]): Variable length indices |
|
seq_length (Optional[int]): Sequence length |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor]: Attention output and weights |
|
""" |
|
origin_dtype = q.dtype |
|
|
|
q = q.permute(0, 2, 1, 3) |
|
k = k.permute(0, 2, 1, 3) |
|
v = v.permute(0, 2, 1, 3) |
|
|
|
scale_qk_coeff = ( |
|
getattr(self.config, "scale_qk_coeff", 1.0) * self.head_dim**0.5 |
|
) |
|
|
|
q = q / scale_qk_coeff |
|
|
|
|
|
if self.is_gqa: |
|
|
|
repeat_factor = self.num_heads // self.num_key_value_heads |
|
k = self.repeat_kv(k, repeat_factor) |
|
v = self.repeat_kv(v, repeat_factor) |
|
|
|
attn_scores = torch.matmul(q, k.transpose(-2, -1)) |
|
|
|
if getattr(self.config, "scale_qk_coeff", 1.0) != 1.0: |
|
attn_scores = attn_scores * getattr(self.config, "scale_qk_coeff", 1.0) |
|
|
|
|
|
seq_len = attn_scores.size(-1) |
|
mask = torch.triu( |
|
torch.ones((seq_len, seq_len), dtype=torch.bool, device=attn_scores.device), |
|
diagonal=1, |
|
) |
|
attn_scores = attn_scores.masked_fill(mask, float("-inf")) |
|
attn_weights = F.softmax(attn_scores, dim=-1) |
|
|
|
attn_weights = attn_weights.to(origin_dtype) |
|
|
|
|
|
if getattr(self.config, "attention_probs_dropout_prob", 0.0) > 0: |
|
attn_weights = F.dropout( |
|
attn_weights, |
|
p=self.config.attention_probs_dropout_prob, |
|
training=self.training, |
|
) |
|
|
|
|
|
out = torch.matmul(attn_weights, v) |
|
|
|
|
|
out = out.permute(0, 2, 1, 3) |
|
|
|
out = out.contiguous().view(out.size(0), out.size(1), -1) |
|
|
|
return out, attn_weights |
|
|
|
def rope_attn( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
position_ids, |
|
output_attentions=False, |
|
past_key_value=None, |
|
use_cache=False, |
|
attn_mask_start_row_indices=None, |
|
): |
|
"""Attention computation with rotary embeddings. |
|
|
|
Args: |
|
query_states (torch.Tensor): Query states |
|
key_states (torch.Tensor): Key states |
|
value_states (torch.Tensor): Value states |
|
attention_mask (Optional[torch.Tensor]): Attention mask |
|
position_ids (Optional[torch.Tensor]): Position indices |
|
output_attentions (bool): Return attention weights |
|
past_key_value (Optional[Tuple[torch.Tensor, torch.Tensor]]): Cached states |
|
use_cache (bool): Cache new states |
|
attn_mask_start_row_indices (Optional[torch.Tensor]): Variable length indices |
|
|
|
Returns: |
|
Tuple containing: |
|
- attention_output: Result tensor |
|
- attention_weights: Optional weights |
|
- updated_key_value_cache: Optional cache |
|
""" |
|
|
|
query_states_dtype = query_states.dtype |
|
|
|
kv_seq_len = key_states.shape[-3] |
|
offset = 0 |
|
if past_key_value is not None: |
|
offset = past_key_value[0].shape[-3] |
|
kv_seq_len += offset |
|
|
|
cos_sin = self.rotary_emb(kv_seq_len).permute( |
|
[0, 2, 1, 3] |
|
) |
|
if offset > 0: |
|
cos_sin = cos_sin[:, offset:] |
|
query_states, key_states = self.rotary_emb.apply_rotary( |
|
cos_sin, query_states, key_states |
|
) |
|
|
|
query_states = query_states.to(query_states_dtype) |
|
key_states = key_states.to(query_states_dtype) |
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=1) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=1) |
|
|
|
|
|
past_key_value = [key_states, value_states] if use_cache else None |
|
seq_length = query_states.shape[1] |
|
attn_output, attn_weights = self.attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
attn_mask_start_row_indices, |
|
seq_length, |
|
) |
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class Ernie4_5_DecoderLayer(nn.Module): |
|
""" |
|
A single transformer decoder layer in ERNIE model. |
|
""" |
|
|
|
def __init__(self, config, layer_idx): |
|
"""Initialize the decoder layer. |
|
|
|
Args: |
|
config: Model configuration. |
|
layer_idx (int): Index of this layer in the transformer stack |
|
""" |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.layer_idx = layer_idx |
|
self.config = config |
|
|
|
self.self_attn = Ernie4_5_Attention(config, layer_idx) |
|
self.mlp = Ernie4_5_MLP(config) |
|
|
|
self.input_layernorm = Ernie4_5_RMSNorm(config) |
|
self.post_attention_layernorm = Ernie4_5_RMSNorm(config) |
|
|
|
self.residual_add1 = Ernie4_5_FusedDropoutImpl(config.hidden_dropout_prob) |
|
self.residual_add2 = Ernie4_5_FusedDropoutImpl(config.hidden_dropout_prob) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
attn_mask_start_row_indices: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = False, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
use_cache: Optional[bool] = False, |
|
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
"""Forward pass through the decoder layer. |
|
|
|
Args: |
|
hidden_states (torch.Tensor): Input tensor [batch_size, seq_len, hidden_size] |
|
attention_mask (Optional[torch.Tensor]): Attention mask tensor |
|
attn_mask_start_row_indices (Optional[torch.Tensor]): Indices for variable length attention |
|
position_ids (Optional[torch.Tensor]): Position indices for rotary embeddings |
|
output_attentions (Optional[bool]): Whether to return attention weights |
|
past_key_value (Optional[Tuple[torch.Tensor]]): Cached key/value states |
|
use_cache (Optional[bool]): Whether to cache key/value states |
|
|
|
Returns: |
|
Union: Various output combinations depending on arguments: |
|
- Base case: Hidden states tensor |
|
- With attention: Tuple of (hidden_states, attention_weights) |
|
- With cache: Tuple of (hidden_states, cached_key_value) |
|
""" |
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
(hidden_states, self_attn_weights, present_key_value) = self.self_attn( |
|
hidden_states=hidden_states, |
|
past_key_value=past_key_value, |
|
attention_mask=attention_mask, |
|
attn_mask_start_row_indices=attn_mask_start_row_indices, |
|
position_ids=position_ids, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
token_type_ids=token_type_ids, |
|
) |
|
hidden_states = self.residual_add1(hidden_states, residual) |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = self.residual_add2(hidden_states, residual) |
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
if type(outputs) is tuple and len(outputs) == 1: |
|
outputs = outputs[0] |
|
|
|
return outputs |
|
|
|
|
|
class Ernie4_5_PretrainedModel(PreTrainedModel): |
|
"""Base class for ERNIE pretrained models.""" |
|
|
|
config_class = Ernie4_5_Config |
|
base_model_prefix = "ernie" |
|
|
|
|
|
class Ernie4_5_Model(Ernie4_5_PretrainedModel): |
|
|
|
def __init__(self, config): |
|
"""Initialize the ERNIE model architecture. |
|
|
|
Args: |
|
config: Model configuration. |
|
""" |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.hidden_size = config.hidden_size |
|
self.config = config |
|
|
|
self.embed_tokens = nn.Embedding( |
|
self.vocab_size, |
|
self.hidden_size, |
|
) |
|
|
|
self.layers = nn.ModuleList( |
|
[Ernie4_5_DecoderLayer(config, i) for i in range(config.num_hidden_layers)] |
|
) |
|
|
|
self.norm = Ernie4_5_RMSNorm(config) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def get_input_embeddings(self): |
|
"""Get the input embedding layer. |
|
|
|
Returns: |
|
nn.Embedding: The embedding layer for input tokens |
|
""" |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
"""Set new input embeddings. |
|
|
|
Args: |
|
value (nn.Embedding): New embedding layer to use |
|
""" |
|
self.embed_tokens = value |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
position_ids=None, |
|
token_type_ids=None, |
|
attention_mask=None, |
|
attn_mask_start_row_indices=None, |
|
inputs_embeds=None, |
|
use_cache=None, |
|
past_key_values=None, |
|
output_attentions=False, |
|
output_hidden_states=None, |
|
return_dict=False, |
|
): |
|
"""Forward pass through the ERNIE model. |
|
|
|
Args: |
|
input_ids (Optional[torch.Tensor]): Input token IDs |
|
position_ids (Optional[torch.Tensor]): Position indices |
|
attention_mask (Optional[torch.Tensor]): Attention mask |
|
attn_mask_start_row_indices (Optional[torch.Tensor]): Variable length attention indices |
|
inputs_embeds (Optional[torch.Tensor]): Precomputed embeddings |
|
use_cache (Optional[bool]): Whether to cache key/value states |
|
past_key_values (Optional[Tuple[Tuple[torch.Tensor]]]): Cached key/value states |
|
output_attentions (Optional[bool]): Whether to output attention weights |
|
output_hidden_states (Optional[bool]): Whether to output all hidden states |
|
return_dict (Optional[bool]): Whether to return dict or tuple |
|
|
|
Returns: |
|
Union[Tuple, BaseModelOutputWithPast]: |
|
Various outputs depending on configuration, including: |
|
- last_hidden_state: Final layer hidden states |
|
- past_key_values: Cached key/value states if use_cache=True |
|
- hidden_states: All hidden states if output_hidden_states=True |
|
- attentions: Attention weights if output_attentions=True |
|
""" |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
_, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
_, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError( |
|
"You have to specify either decoder_input_ids or decoder_inputs_embeds" |
|
) |
|
|
|
if past_key_values is None: |
|
past_key_values = tuple([None] * len(self.layers)) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
inputs_embeds = inputs_embeds.to(self.embed_tokens.weight.dtype) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
|
|
for idx, (decoder_layer) in enumerate(self.layers): |
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = ( |
|
past_key_values[idx] if past_key_values is not None else None |
|
) |
|
|
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask, |
|
attn_mask_start_row_indices, |
|
position_ids, |
|
token_type_ids, |
|
output_attentions, |
|
past_key_value, |
|
use_cache, |
|
) |
|
|
|
if isinstance(layer_outputs, (tuple, list)): |
|
hidden_states = layer_outputs[0] |
|
else: |
|
hidden_states = layer_outputs |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
if past_key_value is not None: |
|
hidden_states = hidden_states[:, -1:, :] |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
next_cache, |
|
all_hidden_states, |
|
all_self_attns, |
|
] |
|
if v is not None |
|
) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class Ernie4_5_LMHead(nn.Module): |
|
"""Language model head for ERNIE""" |
|
|
|
def __init__(self, config): |
|
"""Initialize the language model head. |
|
|
|
Args: |
|
config: Model configuration containing: |
|
- vocab_size: Size of vocabulary |
|
- hidden_size: Dimension of hidden states |
|
- tie_word_embeddings: Whether to tie input/output embeddings |
|
- weight_share_add_bias: Whether to add bias when weight sharing |
|
- use_bias: Whether to use bias term |
|
""" |
|
|
|
super(Ernie4_5_LMHead, self).__init__() |
|
self.config = config |
|
vocab_size = config.vocab_size |
|
|
|
if config.tie_word_embeddings: |
|
|
|
self.weight = nn.Parameter( |
|
torch.empty( |
|
vocab_size, config.hidden_size, dtype=torch.get_default_dtype() |
|
) |
|
) |
|
else: |
|
|
|
self.weight = nn.Parameter( |
|
torch.empty( |
|
config.hidden_size, vocab_size, dtype=torch.get_default_dtype() |
|
) |
|
) |
|
nn.init.xavier_uniform_(self.weight) |
|
|
|
logger.info( |
|
f"output-weight: {self.weight.shape}, tie_word_embeddings: {config.tie_word_embeddings}" |
|
) |
|
|
|
if config.weight_share_add_bias and config.use_bias: |
|
self.bias = nn.Parameter( |
|
torch.zeros(vocab_size, dtype=torch.get_default_dtype()) |
|
) |
|
else: |
|
self.bias = None |
|
|
|
def forward(self, hidden_states): |
|
"""Project hidden states to vocabulary logits. |
|
|
|
Args: |
|
hidden_states (torch.Tensor): Input tensor of shape [batch_size, seq_len, hidden_size] |
|
|
|
Returns: |
|
Logits tensor of shape [batch_size, seq_len, vocab_size] |
|
""" |
|
return self.calc_lm_head_logits( |
|
self.config, hidden_states, self.weight, self.bias |
|
) |
|
|
|
def calc_lm_head_logits(self, config, hidden_states, weight, bias): |
|
""" |
|
Calculate language model head logits. |
|
|
|
This is the core function that computes the final output logits for a language model. |
|
|
|
Args: |
|
config: Model configuration. |
|
hidden_states (Tensor): Hidden states from the transformer layers |
|
weight (Tensor): Weight matrix for the language model head |
|
bias (Tensor): Bias vector for the language model head |
|
|
|
Returns: |
|
Tensor: The computed logits for language modeling. |
|
""" |
|
|
|
if config.tie_word_embeddings: |
|
logits = torch.matmul(hidden_states, weight.T) |
|
else: |
|
logits = torch.matmul(hidden_states, weight) |
|
|
|
if bias is not None: |
|
logits = logits + bias |
|
|
|
return logits |
|
|
|
|
|
class Ernie4_5_ForCausalLM(Ernie4_5_PretrainedModel, GenerationMixin): |
|
"""ERNIE model for causal language modeling.""" |
|
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
def __init__(self, config): |
|
""" |
|
Initializes the ERNIE model for causal language modeling. |
|
|
|
Args: |
|
config: Model configuration. |
|
""" |
|
super().__init__(config) |
|
|
|
self.config = config |
|
self.model = Ernie4_5_Model(config) |
|
self.lm_head = Ernie4_5_LMHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
@torch.no_grad() |
|
def set_state_dict(self, state_dict, *args, **kwargs): |
|
""" |
|
Loads the model state dictionary. |
|
""" |
|
ret = super().set_state_dict(state_dict) |
|
return ret |
|
|
|
def get_input_embeddings(self): |
|
"""Returns the input embeddings layer.""" |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
"""Sets the input embeddings layer.""" |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
"""Returns the output embeddings (LM head).""" |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
"""Sets the output embeddings layer.""" |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
"""Sets the ERNIE decoder model.""" |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
"""Gets the ERNIE decoder model.""" |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids, |
|
position_ids=None, |
|
attention_mask=None, |
|
attn_mask_start_row_indices=None, |
|
token_type_ids=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
use_cache=False, |
|
past_key_values=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
**kwargs, |
|
): |
|
""" |
|
Forward pass for causal language modeling. |
|
|
|
Args: |
|
input_ids (torch.Tensor): Input token IDs. |
|
position_ids (torch.Tensor): Position IDs. |
|
attention_mask (torch.Tensor): Attention mask. |
|
attn_mask_start_row_indices (torch.Tensor): Attention mask start indices. |
|
inputs_embeds (torch.Tensor): Optional embedded inputs. |
|
labels (torch.Tensor): Target labels. |
|
use_cache (bool): Whether to use cached hidden states. |
|
past_key_values (dict): Pre-computed hidden states. |
|
output_attentions (bool): Whether to output attentions. |
|
output_hidden_states (bool): Whether to output hidden states. |
|
|
|
Returns: |
|
CausalLMOutputWithPast: Model outputs. |
|
""" |
|
|
|
if past_key_values is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
outputs = self.model( |
|
input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
attn_mask_start_row_indices=attn_mask_start_row_indices, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
past_key_values=past_key_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=True, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function( |
|
logits=logits, |
|
labels=labels, |
|
vocab_size=self.config.vocab_size, |
|
**kwargs, |
|
) |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|