File size: 8,388 Bytes
f6a47e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright (c) 2025 Baidu, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from transformers import PretrainedConfig


class Ernie4_5_MoeConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`Ernie4_5_Model`].
    It is used to instantiate an ERNIE-4.5 model according to the specified arguments,
    defining the model architecture. Instantiating a configuration with the defaults
    will yield a similar configuration to that of ERNIE-4.5-21B-A3B-PT [baidu/ERNIE-4.5-21B-A3B-PT].

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (int): Size of the vocabulary (number of unique tokens)
        hidden_size (int): Dimensionality of the encoder layers and the pooler layer
        intermediate_size (int): Dimensionality of the "intermediate" (feed-forward) layer
        max_position_embeddings (int): Maximum sequence length the model can handle
        num_hidden_layers (int): Number of hidden layers in the Transformer encoder
        num_attention_heads (int): Number of attention heads for each attention layer
        rms_norm_eps (float): The epsilon used by the RMS normalization layers
        use_cache (bool): Whether to use caching for faster generation (decoding)
        use_flash_attention (bool): Whether to use FlashAttention for optimized attention computation
        pad_token_id (int): Token ID used for padding sequences
        bos_token_id (int): Token ID used for beginning-of-sequence
        eos_token_id (int): Token ID used for end-of-sequence
        use_bias (bool): Whether to use bias terms in linear layers
        rope_theta (float): The base period of the RoPE embeddings
        weight_share_add_bias (bool): Whether to share bias weights in certain layers
        ignored_index (int): Target value that is ignored during loss computation
        attention_probs_dropout_prob (float): Dropout probability for attention weights
        hidden_dropout_prob (float): Dropout probability for hidden layers
        num_key_value_heads (int): Number of key/value heads (for Grouped Query Attention)
        max_sequence_length (int): Maximum sequence length for positional embeddings
        moe_num_experts: Number of experts in MoE layers
        moe_capacity: Capacity configuration for MoE layers
        moe_layer_interval: Interval between MoE layers
        moe_layer_start_index: Starting layer index for MoE
        moe_layer_end_index: Ending layer index for MoE (-1 means last layer)
        sinkhorn_2gate: Whether to use sinkhorn 2-gate routing
        sinkhorn_temp: Temperature for sinkhorn routing
        moe_dropout_prob: Dropout probability for MoE layers
        moe_gate: Type of gating mechanism ('top2', etc.)
        moe_intermediate_size: Intermediate size for MoE layers
        moe_gate_act: Activation function for gating
        moe_k: Number of experts to route to
        **kwargs: Additional base model configuration parameters
    """

    model_type = "ernie4_5_moe"
    use_keep_in_fp32_modules = True
    keys_to_ignore_at_inference = ["past_key_values"]

    attribute_map = {
        "n_positions": "max_position_embeddings",
        "n_embd": "hidden_size",
        "n_layer": "num_hidden_layers",
        "n_head": "num_attention_heads",
        "n_inner": "intermediate_size",
        "activation_function": "hidden_act",
    }

    # Default tensor parallel plan for base model `ernie_4_5_moe`
    base_model_tp_plan = {
        "model.layers.*.self_attn.q_proj": "colwise_rep",
        "model.layers.*.self_attn.k_proj": "colwise_rep",
        "model.layers.*.self_attn.v_proj": "colwise_rep",
        "model.layers.*.self_attn.o_proj": "rowwise_rep",
        "model.layers.*.mlp.experts.*.gate_proj": "colwise",
        "model.layers.*.mlp.experts.*.up_proj": "colwise",
        "model.layers.*.mlp.experts.*.down_proj": "rowwise",
        "model.layers.*.mlp.gate_proj": "colwise",
        "model.layers.*.mlp.up_proj": "colwise",
        "model.layers.*.mlp.down_proj": "rowwise",
    }
    base_model_pp_plan = {
        "embed_tokens": (["input_ids"], ["inputs_embeds"]),
        "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
        "norm": (["hidden_states"], ["hidden_states"]),
    }

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=768,
        intermediate_size=11008,
        num_hidden_layers=2,
        num_attention_heads=2,
        num_key_value_heads=None,
        max_position_embeddings=32768,
        use_sliding_window=None,
        sliding_window=None,
        rms_norm_eps=1e-6,
        use_cache=False,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        attention_probs_dropout_prob=0.0,
        hidden_dropout_prob=0.0,
        rope_theta=10000.0,
        use_flash_attention=False,
        use_rmsnorm=True,
        use_bias=False,
        weight_share_add_bias=True,
        max_sequence_length=None,
        ignored_index=-100,
        use_moe=True,
        moe_num_experts=64,
        moe_capacity=(64, 64, 64),
        moe_layer_interval=2,
        moe_layer_start_index=0,
        moe_layer_end_index=-1,
        sinkhorn_2gate=True,
        sinkhorn_temp=3e-2,
        moe_dropout_prob=0.0,
        moe_gate="top2",
        moe_intermediate_size=3584,
        moe_k=2,
        moe_gate_act: str = "softmax",
        moe_use_aux_free=False,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.use_sliding_window = use_sliding_window
        self.sliding_window = sliding_window
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads

        if num_key_value_heads is None:
            num_key_value_heads = num_attention_heads

        self.num_key_value_heads = num_key_value_heads
        self.use_rmsnorm = use_rmsnorm
        self.rms_norm_eps = rms_norm_eps
        self.rope_theta = rope_theta
        self.max_sequence_length = max_sequence_length
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.ignored_index = ignored_index
        self.use_cache = use_cache
        self.use_bias = use_bias
        self.weight_share_add_bias = weight_share_add_bias
        self.use_flash_attention = use_flash_attention
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.hidden_dropout_prob = hidden_dropout_prob

        self.use_moe = moe_num_experts > 0 and use_moe
        self.moe_num_experts = moe_num_experts
        self.moe_capacity = moe_capacity
        self.sinkhorn_2gate = sinkhorn_2gate
        self.sinkhorn_temp = sinkhorn_temp
        self.moe_layer_interval = moe_layer_interval
        self.moe_dropout_prob = moe_dropout_prob
        self.moe_gate = moe_gate
        self.moe_intermediate_size = moe_intermediate_size
        self.moe_k = moe_k
        self.moe_layer_start_index = moe_layer_start_index
        self.moe_layer_end_index = (
            self.num_hidden_layers - 1
            if moe_layer_end_index == -1
            else moe_layer_end_index
        )
        self.moe_gate_act = moe_gate_act
        self.moe_use_aux_free = moe_use_aux_free

        # Set default for tied embeddings if not specified.
        if "tie_word_embeddings" not in kwargs:
            kwargs["tie_word_embeddings"] = False

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs,
        )