|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from copy import deepcopy |
|
from dataclasses import dataclass |
|
from functools import partial |
|
from typing import Callable, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.nn as nn |
|
|
|
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
from transformers.modeling_outputs import ModelOutput, MoeCausalLMOutputWithPast |
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS |
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from transformers.processing_utils import Unpack |
|
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, logging, is_torch_flex_attn_available |
|
|
|
from .configuration_ernie4_5_moe import Ernie4_5_MoeConfig |
|
|
|
|
|
if is_torch_flex_attn_available(): |
|
from torch.nn.attention.flex_attention import BlockMask |
|
|
|
from transformers.integrations.flex_attention import make_flex_block_causal_mask |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ... |
|
|
|
@dataclass |
|
class Erine4_5_MoeModelOutputWithPast(ModelOutput): |
|
last_hidden_state: Optional[torch.FloatTensor] = None |
|
past_key_values: Optional[Cache] = None |
|
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None |
|
attentions: Optional[tuple[torch.FloatTensor, ...]] = None |
|
router_loss: Optional[torch.FloatTensor] = None |
|
gate_logits: Optional[tuple[torch.FloatTensor, ...]] = None |
|
|
|
|
|
@dataclass |
|
class Ernie4_5_MoeCausalLMOutputWithPast(MoeCausalLMOutputWithPast): |
|
router_loss: Optional[torch.FloatTensor] = None |
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
|
|
x1 = x[..., 0::2] |
|
x2 = x[..., 1::2] |
|
return torch.stack((-x2, x1), dim=-1).reshape(x.shape) |
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
""" |
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
""" |
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
if n_rep == 1: |
|
return hidden_states |
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) |
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
Args: |
|
q (`torch.Tensor`): The query tensor. |
|
k (`torch.Tensor`): The key tensor. |
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
position_ids (`torch.Tensor`, *optional*): |
|
Deprecated and unused. |
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
Returns: |
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
""" |
|
orig_dtype = q.dtype |
|
sin_pos = torch.stack([sin, sin], dim=-1).reshape(*sin.shape[:-1],-1) |
|
cos_pos = torch.stack([cos, cos], dim=-1).reshape(*sin.shape[:-1],-1) |
|
q_embed = (q.float() * cos_pos) + (rotate_half(q).float() * sin_pos) |
|
k_embed = (k.float() * cos_pos) + (rotate_half(k).float() * sin_pos) |
|
return q_embed.to(orig_dtype), k_embed.to(orig_dtype) |
|
|
|
|
|
def eager_attention_forward( |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
scaling: float, |
|
dropout: float = 0.0, |
|
**kwargs, |
|
): |
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask.to(attn_weights.device) |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
def topk_gate_func( |
|
module: nn.Module, |
|
hidden_states: torch.Tensor, |
|
): |
|
capacity = module.get_capacity(hidden_states.shape[0]) |
|
with torch.autocast(device_type='cuda',dtype=torch.float32): |
|
logits = module.gate(hidden_states.float()) |
|
router_loss = torch.zeros([1], dtype=torch.float32, device=hidden_states.device) |
|
router_loss.detach() |
|
return logits, capacity, router_loss |
|
|
|
|
|
class Ernie4_5_ResidualWithDropout(nn.Module): |
|
""" |
|
Fused dropout implementation with residual connection support. |
|
|
|
This layer combines dropout and residual addition in a single operation for better performance, |
|
particularly on GPU devices. The dropout is conditionally applied based on the probability. |
|
|
|
Args: |
|
prob (float): Dropout probability (between 0 and 1) |
|
|
|
Attributes: |
|
prob (float): Stores the dropout probability |
|
dropout (nn.Dropout): The actual dropout layer instance |
|
""" |
|
|
|
def __init__(self, prob): |
|
""" |
|
Initialize the fused dropout layer. |
|
|
|
Args: |
|
prob (float): Dropout probability (0 means no dropout) |
|
""" |
|
super().__init__() |
|
self.prob = prob |
|
self.dropout = nn.Dropout(p=prob) |
|
|
|
def forward(self, x, y): |
|
""" |
|
Forward pass of the fused dropout layer. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor to potentially apply dropout on |
|
y (torch.Tensor): Residual tensor to add to the (possibly dropped out) x |
|
|
|
Returns: |
|
torch.Tensor: Result of x (with optional dropout) + y |
|
""" |
|
if self.prob > 0: |
|
x = self.dropout(x) |
|
output = x + y |
|
|
|
return output |
|
|
|
|
|
class Ernie4_5_Attention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config, layer_idx=0): |
|
""" |
|
Args: |
|
config (ErnieConfig): Model configuration. |
|
layer_idx (int, optional): Index in transformer stack. Defaults to 0. |
|
""" |
|
super().__init__() |
|
self.layer_idx = layer_idx |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.num_key_value_heads = config.num_key_value_heads if config.num_key_value_heads is not None else self.nums_head |
|
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.freq_allocation = config.freq_allocation if hasattr(config, "freq_allocation") else 0 |
|
self.scaling = self.head_dim**-0.5 |
|
self.attention_dropout = getattr(config, "attention_probs_dropout_prob", 0.0) |
|
self.is_causal = True |
|
|
|
self.q_proj = nn.Linear( |
|
self.hidden_size, |
|
self.num_heads * self.head_dim, |
|
bias=config.use_bias, |
|
) |
|
|
|
self.k_proj = nn.Linear( |
|
self.hidden_size, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=config.use_bias, |
|
) |
|
|
|
self.v_proj = nn.Linear( |
|
self.hidden_size, |
|
self.num_key_value_heads * self.head_dim, |
|
bias=config.use_bias, |
|
) |
|
|
|
self.o_proj = nn.Linear( |
|
self.hidden_size, |
|
self.hidden_size, |
|
bias=config.use_bias, |
|
) |
|
|
|
self.config = config |
|
|
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Cache] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: tuple[torch.Tensor, torch.Tensor] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor, torch.Tensor]]]: |
|
B, L = hidden_states.shape[:-1] |
|
|
|
query_states = self.q_proj(hidden_states).view(B, L, self.num_heads, -1).transpose(1, 2) |
|
key_states = self.k_proj(hidden_states).view(B, L, self.num_key_value_heads, -1).transpose(1, 2) |
|
value_states = self.v_proj(hidden_states).view(B, L, self.num_key_value_heads, -1).transpose(1, 2) |
|
|
|
cos, sin = position_embeddings |
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) |
|
|
|
if past_key_value is not None: |
|
|
|
cache_kwargs = {"cache_position": cache_position} |
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) |
|
|
|
attention_interface: Callable = eager_attention_forward |
|
if self.config._attn_implementation != "eager": |
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
scaling=self.scaling, |
|
**kwargs, |
|
) |
|
attn_output = attn_output.reshape(B, L, -1).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class Ernie4_5_MLP(nn.Module): |
|
""" |
|
Ernie4_5_MLP - Gated Multi-Layer Perceptron module used in Ernie model. |
|
""" |
|
|
|
def __init__(self, config,intermediate_size=None): |
|
""" |
|
Initialize the MLP module with configuration options. |
|
|
|
Args: |
|
config: Model configuration object with attributes: |
|
- hidden_size: int |
|
- intermediate_size: int |
|
- use_bias: bool |
|
layer_idx (int): Index of current layer (default: 0) |
|
""" |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size |
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias) |
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.use_bias) |
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias) |
|
|
|
|
|
def forward(self, x): |
|
""" |
|
Args: |
|
x (Tensor): shape [batch_size, seq_len, hidden_size] |
|
|
|
Returns: |
|
Tensor: shape [batch_size, seq_len, hidden_size] |
|
""" |
|
down_proj = self.down_proj(F.silu(self.gate_proj(x)) * self.up_proj(x)) |
|
return down_proj |
|
|
|
|
|
class Ernie4_5_MoeStatics(nn.Module): |
|
""" |
|
Stores MoE (Mixture of Experts) statistics |
|
and expert usage information. |
|
""" |
|
|
|
def __init__(self, config): |
|
""" |
|
Initialize MoE statistics tracking. |
|
|
|
Args: |
|
config: Model configuration containing MoE parameters |
|
""" |
|
super().__init__() |
|
|
|
num_experts = config.moe_num_experts |
|
num_experts_groups = 1 |
|
|
|
self.e_score_correction_bias = nn.Parameter( |
|
torch.zeros(num_experts_groups, num_experts, dtype=torch.float32), |
|
requires_grad=False |
|
) |
|
|
|
class Ernie4_5_MoeMLP(nn.Module): |
|
"""Mixture of Experts (MoE) variant of ERNIE's MLP layer.""" |
|
|
|
def __init__(self,config): |
|
super().__init__() |
|
self.config = config |
|
self.k = config.moe_k |
|
self.sinkhorn_2gate = config.sinkhorn_2gate |
|
self.sinkhorn_temp = config.sinkhorn_temp |
|
|
|
moe_intermediate_size = config.moe_intermediate_size if config.moe_intermediate_size else config.intermediate_size |
|
self.gate = nn.Linear(config.hidden_size, config.moe_num_experts, bias=False, dtype=torch.float32) |
|
if config.moe_gate_act == "softmax": |
|
self.gate_act = partial(F.softmax, dim=-1) |
|
elif config.moe_gate_act == "sigmoid": |
|
self.gate_act = F.sigmoid |
|
else: |
|
raise ValueError(f"{config.moe_gate_act} is not supported.") |
|
|
|
self.experts = nn.ModuleList( |
|
[Ernie4_5_MLP(config,moe_intermediate_size) for i in range(config.moe_num_experts)] |
|
) |
|
|
|
if config.moe_use_aux_free: |
|
self.moe_statics = Ernie4_5_MoeStatics(config) |
|
|
|
self.use_correction_bias = config.moe_use_aux_free |
|
self.num_local_experts = len(self.experts) |
|
|
|
self.shared_experts = self._init_shared_experts() |
|
|
|
def _init_shared_experts(self): |
|
""" |
|
Initialize the shared expert module. |
|
|
|
Returns: |
|
shared_experts: Shared expert module, returns None if no shared experts are needed. |
|
|
|
""" |
|
cfg = deepcopy(self.config) |
|
if getattr(cfg, 'moe_num_shared_experts', 0) > 0: |
|
if getattr(cfg, 'moe_intermediate_size', None): |
|
cfg.intermediate_size = cfg.moe_intermediate_size * cfg.moe_num_shared_experts |
|
else: |
|
cfg.intermediate_size = cfg.intermediate_size * cfg.moe_num_shared_experts |
|
shared_experts = Ernie4_5_MLP(cfg, cfg.intermediate_size) |
|
else: |
|
shared_experts = None |
|
return shared_experts |
|
|
|
def forward( |
|
self, |
|
input: torch.Tensor, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
""" |
|
Forward pass through MoE layer. |
|
|
|
Args: |
|
input (Tensor): Input tensor of shape [s, d]. |
|
token_type_ids: Optional tensor for token types. |
|
|
|
Returns: |
|
tuple: (output, combine_weights, router_loss, gate_logits) |
|
""" |
|
|
|
if input.dim() == 3: |
|
orig_shape = input.shape |
|
input = input.reshape(-1, input.shape[-1]) |
|
else: |
|
orig_shape = None |
|
assert input.dim() == 2, f"input Tensor must have dimensions: (s)equence, (d)im, got:{input.shape}" |
|
|
|
assert self.gate is not None |
|
|
|
gate_input = input |
|
|
|
( |
|
dispatched_input, |
|
combine_weights, |
|
dispatch_mask, |
|
scatter_index, |
|
router_loss, |
|
gate_logits, |
|
gate_prob |
|
) = self.gate_and_dispatch(gate_input) |
|
|
|
expert_out = self.forward_experts(dispatched_input) |
|
|
|
combined_output = self.combine_expert_output(expert_out, combine_weights, scatter_index) |
|
|
|
if self.shared_experts is not None: |
|
shared_expert_out = self.shared_experts(gate_input) |
|
combined_output += shared_expert_out |
|
|
|
if orig_shape: |
|
combined_output = combined_output.reshape(orig_shape[:-1] + (combined_output.shape[-1],)) |
|
|
|
return combined_output, combine_weights, router_loss, gate_logits |
|
|
|
def forward_experts(self, dispatched_input: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Forward pass through experts sequentially. |
|
|
|
Args: |
|
dispatched_input (Tensor): Input tensor of shape [num_experts, capacity, dim]. |
|
|
|
Returns: |
|
Tensor: Expert outputs of shape [num_experts, capacity, dim]. |
|
""" |
|
true_experts = self.experts |
|
dispatched_input = dispatched_input.reshape( |
|
1, self.num_local_experts, -1, dispatched_input.shape[-1] |
|
) |
|
expert_outputs = [] |
|
if isinstance(self.experts, nn.ModuleList): |
|
chunks = dispatched_input.permute(1, 0, 2, 3).contiguous().unbind(0) |
|
assert len(chunks) == len(true_experts), f"{len(chunks)}, {len(true_experts)}" |
|
for chunk, expert in zip(chunks, true_experts): |
|
expert_outputs.append(expert(chunk)) |
|
else: |
|
dispatched_input = dispatched_input.permute(1, 0, 2, 3).contiguous() |
|
orig_shape = dispatched_input.shape |
|
chunks = dispatched_input.reshape(orig_shape[0], -1, orig_shape[-1]) |
|
chunks = self.experts(chunks) |
|
chunks = chunks.reshape(orig_shape[:-1] + (chunks.shape[-1],)).unbind(0) |
|
expert_outputs.extend(chunks) |
|
|
|
expert_output = torch.stack(expert_outputs, dim=1) |
|
return expert_output |
|
|
|
def moe_gate_dispatch( |
|
self, |
|
x: torch.Tensor, |
|
gate_logits: torch.Tensor, |
|
k: int, |
|
capacity: Optional[int], |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, |
|
torch.Tensor, torch.Tensor]: |
|
|
|
S, H = x.shape |
|
E = gate_logits.shape[1] |
|
device = x.device |
|
topk_prob, topk_idx = torch.topk(gate_logits, k, dim=-1) |
|
combine_weights = topk_prob |
|
expert_id = topk_idx |
|
y = x.new_zeros((E, capacity, H)) |
|
scatter_index = x.new_full((k, S), -1, dtype=torch.int32) |
|
|
|
|
|
slot_counter = torch.zeros(E, dtype=torch.int32, device=device) |
|
|
|
for tok in range(S): |
|
for route in range(k): |
|
e = expert_id[tok, route].item() |
|
slot = slot_counter[e].item() |
|
if slot >= capacity: |
|
combine_weights[tok, route] = 0.0 |
|
continue |
|
|
|
|
|
scatter_index[route, tok] = e * capacity + slot |
|
y[e, slot] = x[tok] |
|
slot_counter[e] += 1 |
|
|
|
expert_offset = torch.cumsum(slot_counter, 0, dtype=torch.int64) |
|
|
|
return y, combine_weights, scatter_index, expert_offset, expert_id |
|
|
|
def combine_expert_output(self, expert_output: torch.Tensor, combine_weights: torch.Tensor, scatter_index: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Combine expert outputs using combination weights. |
|
|
|
Args: |
|
expert_output (Tensor): Expert outputs [num_experts, capacity, dim]. |
|
combine_weights (Tensor): Combination weights. |
|
scatter_index (Tensor): Scatter indices. |
|
|
|
Returns: |
|
Tensor: Combined output [seqlen, dim]. |
|
""" |
|
expert_output = expert_output.reshape(-1, expert_output.shape[-1]) |
|
combined_output = self.combining(expert_output, combine_weights, scatter_index) |
|
return combined_output |
|
|
|
def combining(self, x, combine_weights, scatter_index): |
|
""" |
|
Combines and aggregates input matrix using combination weights. |
|
|
|
Args: |
|
x (Tensor): Input tensor of shape [num_experts * capacity, dim] |
|
combine_weights (Tensor): Combination weights of shape [seq, 2] |
|
scatter_index (Tensor): Scatter indices of shape [seq, 2] |
|
|
|
Returns: |
|
Tensor: Combined output tensor of shape [seq, dim] |
|
""" |
|
dim = x.shape[-1] |
|
|
|
scatter_index = scatter_index.reshape([-1]) |
|
num_k = combine_weights.shape[-1] |
|
|
|
combine_weights = combine_weights.unsqueeze(1) |
|
|
|
x = x[scatter_index].reshape([-1, num_k, dim]) |
|
|
|
return torch.matmul(combine_weights, x).squeeze(1) |
|
|
|
def gate_and_dispatch(self, input): |
|
""" |
|
Calculate gate and dispatch inputs. |
|
|
|
Args: |
|
input: Input tensor of shape [seq, dim] |
|
|
|
Returns: |
|
tuple: (dispatched_input, combine_weights, dispatch_mask, |
|
scatter_index, router_loss, gate_logits, gate_prob) |
|
""" |
|
gate_logits, capacity, router_loss = topk_gate_func(self, input) |
|
|
|
|
|
prob = self.gate_act(gate_logits) |
|
( |
|
dispatched_input, |
|
combine_weights_unnorm, |
|
scatter_index, |
|
dispatch_mask, |
|
_, |
|
) = self.moe_gate_dispatch(input, prob, k=self.k, capacity=capacity) |
|
dispatch_mask = torch.diff(F.pad(dispatch_mask, (1, 0))) |
|
|
|
scatter_index.detach() |
|
dispatch_mask.detach() |
|
|
|
scatter_index = scatter_index.transpose(0, 1) |
|
combine_weights = combine_weights_unnorm / torch.clamp( |
|
combine_weights_unnorm.sum(dim=-1, keepdim=True), min=1e-12 |
|
) |
|
combine_weights = combine_weights.to(dtype=dispatched_input.dtype) |
|
|
|
return dispatched_input, combine_weights, dispatch_mask, scatter_index, router_loss, gate_logits, prob |
|
|
|
def get_capacity(self, num_tokens, cap_factor=None): |
|
""" |
|
Calculate capacity based on number of tokens. |
|
|
|
Args: |
|
num_tokens: Number of input tokens |
|
cap_factor: Optional capacity factor override |
|
|
|
Returns: |
|
int: Calculated capacity |
|
""" |
|
num_experts = self.config.moe_num_experts |
|
if cap_factor is not None: |
|
cap = cap_factor |
|
else: |
|
if self.training: |
|
cap = self.config.moe_capacity[0] |
|
elif num_tokens < num_experts: |
|
cap = self.config.moe_capacity[2] |
|
else: |
|
cap = self.config.moe_capacity[1] |
|
|
|
capacity = int(cap * num_tokens // num_experts) |
|
assert capacity > 0, f"requires capacity to >= 0. cap={cap}, num_tokens={num_tokens}" |
|
return capacity |
|
|
|
|
|
class Ernie4_5_RMSNorm(nn.Module): |
|
""" |
|
Ernie Root Mean Square Layer Normalization (Ernie4_5_RMSNorm) implementation. |
|
|
|
Ernie4_5_RMSNorm is a simplified version of LayerNorm that focuses on the root mean square of inputs, |
|
omitting the mean-centering operation. This provides computational efficiency while maintaining |
|
good performance. |
|
|
|
""" |
|
|
|
def __init__(self, config): |
|
""" |
|
Initialize RMSNorm layer. |
|
|
|
Args: |
|
config (ErnieConfig): Model configuration. |
|
""" |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.weight = nn.Parameter(torch.ones(config.hidden_size)) |
|
self.variance_epsilon = config.rms_norm_eps |
|
|
|
def forward(self, hidden_states): |
|
""" |
|
Apply RMS normalization to input hidden states. |
|
|
|
Args: |
|
hidden_states (Tensor): Input tensor of shape [batch_size, seq_len, hidden_size] |
|
|
|
Returns: |
|
Tensor: Normalized output tensor of same shape as input |
|
""" |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(dim=-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
class Ernie4_5_RopeEmbedding(nn.Module): |
|
def __init__(self, config: Ernie4_5_MoeConfig, device=None): |
|
super().__init__() |
|
|
|
if hasattr(config, "rope_scaling") and config.rope_scaling is not None: |
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) |
|
else: |
|
self.rope_type = "default" |
|
self.max_seq_len_cached = config.max_position_embeddings |
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
self.config = config |
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
self.original_inv_freq = self.inv_freq |
|
|
|
@torch.no_grad() |
|
def forward(self, x, position_ids): |
|
inv_freq_expanded = self.inv_freq[None,None,:].float() |
|
position_ids_expanded = position_ids[...,None].float() |
|
freqs = (inv_freq_expanded.float() * position_ids_expanded.float()) |
|
cos = torch.cos(freqs) * self.attention_scaling |
|
sin = torch.sin(freqs) * self.attention_scaling |
|
return cos, sin |
|
|
|
|
|
|
|
class Ernie4_5_DecoderLayer(nn.Module): |
|
"""A single transformer decoder layer in ERNIE-MoE model. |
|
|
|
Contains self-attention and feed-forward components with optional MoE (Mixture of Experts) |
|
support, residual connections, and layer normalization. |
|
""" |
|
|
|
def __init__(self, config, layer_idx): |
|
"""Initialize the decoder layer. |
|
|
|
Args: |
|
config (ErnieMoEConfig): Model configuration. |
|
layer_idx (int): Index of this layer in the transformer stack |
|
""" |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.layer_idx = layer_idx |
|
self.config = config |
|
self.use_moe = config.use_moe |
|
self.self_attn = Ernie4_5_Attention(config, layer_idx) |
|
|
|
moe_layer_start_index = ( |
|
min(config.moe_layer_start_index) |
|
if isinstance(config.moe_layer_start_index, (tuple, list)) |
|
else config.moe_layer_start_index |
|
) |
|
moe_layer_end_index = ( |
|
max(config.moe_layer_end_index) |
|
if isinstance(config.moe_layer_end_index, (tuple, list)) |
|
else config.moe_layer_end_index |
|
) |
|
|
|
if ( |
|
self.use_moe |
|
and ((layer_idx + 1) % config.moe_layer_interval == 0) |
|
and layer_idx >= moe_layer_start_index |
|
and layer_idx <= moe_layer_end_index |
|
): |
|
self.mlp = Ernie4_5_MoeMLP(config) |
|
else: |
|
self.mlp = Ernie4_5_MLP(config) |
|
|
|
self.input_layernorm = Ernie4_5_RMSNorm(config) |
|
self.post_attention_layernorm = Ernie4_5_RMSNorm(config) |
|
|
|
self.residual_add1 = Ernie4_5_ResidualWithDropout(config.hidden_dropout_prob) |
|
self.residual_add2 = Ernie4_5_ResidualWithDropout(config.hidden_dropout_prob) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
output_router_loss: bool = True, |
|
output_gate_logits: bool = True, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]: |
|
"""Forward pass through the decoder layer. |
|
|
|
Args: |
|
hidden_states (torch.Tensor): Input tensor [batch_size, seq_len, hidden_size] |
|
attention_mask (Optional[torch.Tensor]): Attention mask tensor |
|
position_ids (Optional[torch.Tensor]): Position indices for rotary embeddings |
|
past_key_value (Optional[Tuple[torch.Tensor]]): Cached key/value states |
|
output_attentions (Optional[bool]): Whether to return attention weights |
|
use_cache (Optional[bool]): Whether to cache key/value states |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
position_embeddings (`tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): |
|
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, |
|
with `head_dim` being the embedding dimension of each attention head. |
|
output_router_loss (bool): Whether to return MoE router loss |
|
output_gate_logits (bool): Whether to return MoE gate logits |
|
|
|
Returns: |
|
Union: Various output combinations depending on arguments: |
|
- Base case: Hidden states tensor |
|
- With attention: Tuple of (hidden_states, attention_weights) |
|
- With router loss: May include gate logits in output tuple |
|
- With MoE gate logits: May include gate logits in output tuple |
|
""" |
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
past_key_value=past_key_value, |
|
position_ids=position_ids, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
position_embeddings=position_embeddings, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = self.residual_add1(hidden_states, residual) |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
|
router_loss = None |
|
gate_logits = None |
|
|
|
if isinstance(self.mlp, Ernie4_5_MoeMLP): |
|
hidden_states, _, router_loss, gate_logits = self.mlp(hidden_states) |
|
else: |
|
hidden_states = self.mlp(hidden_states) |
|
|
|
hidden_states = self.residual_add2(hidden_states, residual) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if output_router_loss: |
|
outputs += (router_loss,) |
|
|
|
if output_gate_logits: |
|
outputs += (gate_logits,) |
|
|
|
return outputs |
|
|
|
|
|
@auto_docstring |
|
class Ernie4_5_PretrainedModel(PreTrainedModel): |
|
"""Base class for ERNIE pretrained models.""" |
|
config_class = Ernie4_5_MoeConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["Ernie4_5_DecoderLayer"] |
|
_skip_keys_device_placement = ["past_key_values"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_flex_attn = True |
|
_supports_cache_class = True |
|
_supports_quantized_cache = True |
|
_supports_static_cache = False |
|
|
|
|
|
def subbatch(f, arg_idx, axis, bs, out_idx, same_arg_idx={}): |
|
""" |
|
Converts a function to one that applies to subbatch of an input dimension. |
|
Useful for processing large tensors in smaller chunks to reduce memory usage. |
|
|
|
Args: |
|
f (Callable): Function to be subbatched. |
|
arg_idx ([int]): Indices of the inputs to be subbatched. |
|
axis ([int]): Indices of the dimensions to be subbatched for each input. |
|
bs (int): Subbatch size. |
|
out_idx (int): Dimension to concatenate outputs along. |
|
same_arg_idx (dict): Mapping of argument indices that share the same tensor. |
|
|
|
Returns: |
|
Callable: New function that processes inputs in subbatches. |
|
""" |
|
|
|
@functools.wraps(f) |
|
def wrapper(*args, **kwargs): |
|
|
|
assert len(arg_idx) == len(axis), "Number of batching args and number of batching dims should match." |
|
|
|
inps = [args[i] for i in arg_idx] |
|
axis_width = [inp.shape[d] for inp, d in zip(inps, axis)] |
|
assert len(set(axis_width)) == 1, "Batch sizes should be kept equal." |
|
|
|
inp_axis = {idx: d for idx, d in zip(arg_idx, axis)} |
|
|
|
axis_width = axis_width[0] |
|
if axis_width < bs: |
|
return f(*args, **kwargs) |
|
|
|
outs = [] |
|
for slice_at in range(0, axis_width, bs): |
|
_args = [] |
|
for i, inp in enumerate(args): |
|
if i in same_arg_idx: |
|
assert ( |
|
i > same_arg_idx[i] |
|
), f"expect i > same_arg_idx[i], but got i: {i} and same_arg_idx[i]: {same_arg_idx[i]}" |
|
_args.append(_args[same_arg_idx[i]]) |
|
elif i in arg_idx: |
|
d = inp_axis[i] |
|
start = slice_at |
|
end = min(inp.shape[d], slice_at + bs) |
|
|
|
slices = [slice(None)] * inp.ndim |
|
slices[d] = slice(start, end) |
|
_args.append(inp[tuple(slices)]) |
|
else: |
|
_args.append(inp) |
|
|
|
out = f(*_args, **kwargs) |
|
outs.append(out) |
|
|
|
return torch.cat(outs, dim=out_idx) |
|
|
|
return wrapper |
|
|
|
|
|
class ErniePretrainingCriterion(nn.Module): |
|
"""Criterion for ERNIE pretraining task.""" |
|
|
|
def __init__(self, config, return_tuple=True): |
|
"""Initialize the pretraining criterion. |
|
|
|
Args: |
|
config (ErnieConfig): Model configuration. |
|
return_tuple (bool): Whether to return loss as tuple (loss, loss_sum). Defaults to True. |
|
""" |
|
super().__init__() |
|
self.ignored_index = getattr(config, "ignored_index", -100) |
|
self.config = config |
|
self.return_tuple = return_tuple |
|
|
|
self.loss_func = nn.CrossEntropyLoss(reduction="none") |
|
|
|
def forward(self, prediction_scores, masked_lm_labels, loss_mask, router_loss=None): |
|
"""Compute the combined pretraining loss. |
|
|
|
Args: |
|
prediction_scores: Prediction scores tensor, [batch_size, seq_len, vocab_size] |
|
masked_lm_labels: Target labels tensor [batch_size, seq_len] |
|
loss_mask: Optional mask for valid tokens |
|
router_loss: Optional MoE router loss tensor |
|
|
|
Returns: |
|
Union: |
|
- If return_tuple=True: Tuple of (combined_loss, mlm_loss_sum) |
|
- If return_tuple=False: Combined loss tensor |
|
""" |
|
res = self.forward_impl(prediction_scores, masked_lm_labels, loss_mask) |
|
|
|
if self.return_tuple: |
|
loss, loss_sum = res |
|
else: |
|
loss, loss_sum = res, None |
|
|
|
if router_loss is not None and isinstance(router_loss, torch.Tensor): |
|
loss = loss + router_loss - router_loss.detach() |
|
|
|
return loss, loss_sum |
|
|
|
|
|
def loss_impl(self, prediction_scores: torch.Tensor, masked_lm_labels: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Core loss computation without reduction (but per-token). |
|
|
|
Args: |
|
prediction_scores (torch.Tensor): Logits tensor [batch_size, seq_len, vocab_size]. |
|
masked_lm_labels (torch.Tensor): Target labels tensor [batch_size, seq_len]. |
|
|
|
Returns: |
|
torch.Tensor: Unreduced loss tensor of shape [batch_size, seq_len]. |
|
Losses are calculated in float32. |
|
""" |
|
scores_float32 = prediction_scores.to(torch.float32) |
|
|
|
|
|
|
|
unreduced_loss = self.loss_func( |
|
scores_float32.transpose(1, 2), |
|
masked_lm_labels.long() |
|
) |
|
|
|
return unreduced_loss |
|
|
|
def forward_impl(self, prediction_scores, masked_lm_labels, loss_mask=None): |
|
prediction_scores_dims = len(prediction_scores.shape) |
|
|
|
loss_subbatch_seqlen_config_key = "loss_subbatch_seqlen" |
|
default_loss_subbatch_seqlen = 32768 |
|
|
|
current_loss_subbatch_seqlen = self.config.get( |
|
loss_subbatch_seqlen_config_key, default_loss_subbatch_seqlen |
|
) |
|
|
|
if prediction_scores_dims == 2 and prediction_scores.shape[0] > current_loss_subbatch_seqlen: |
|
sb_loss_func = subbatch( |
|
self.loss_impl, [0, 1], [0, 0], current_loss_subbatch_seqlen, 0 |
|
) |
|
masked_lm_loss = sb_loss_func(prediction_scores, masked_lm_labels) |
|
elif prediction_scores_dims == 3 and prediction_scores.shape[1] > current_loss_subbatch_seqlen: |
|
sb_loss_func = subbatch( |
|
self.loss_impl, [0, 1], [1, 1], current_loss_subbatch_seqlen, 1 |
|
) |
|
masked_lm_loss = sb_loss_func(prediction_scores, masked_lm_labels) |
|
else: |
|
masked_lm_loss = self.loss_impl(prediction_scores, masked_lm_labels) |
|
|
|
if loss_mask is None: |
|
loss_mask = masked_lm_labels != self.ignored_index |
|
|
|
loss_mask = loss_mask.reshape(-1).to(torch.float32) |
|
|
|
masked_lm_loss = torch.sum(masked_lm_loss.to(torch.float32).reshape(-1) * loss_mask) |
|
|
|
|
|
loss = masked_lm_loss / loss_mask.sum() |
|
|
|
loss_sum = masked_lm_loss.sum().detach() |
|
|
|
if not self.return_tuple: |
|
if self.training: |
|
return loss |
|
return loss_sum |
|
return loss, loss_sum |
|
|
|
@auto_docstring |
|
class Ernie4_5_Model(Ernie4_5_PretrainedModel): |
|
"""The core ERNIE transformer model with MoE (Mixture of Experts) support.""" |
|
_keep_in_fp32_modules = ['gate'] |
|
def __init__(self, config: Ernie4_5_MoeConfig): |
|
"""Initialize the ERNIE model architecture.""" |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.hidden_size = config.hidden_size |
|
self.config = config |
|
|
|
self.embed_tokens = nn.Embedding( |
|
self.vocab_size, |
|
self.hidden_size, |
|
) |
|
|
|
self.layers = nn.ModuleList( |
|
[ |
|
Ernie4_5_DecoderLayer(config, i) |
|
for i in range(config.num_hidden_layers) |
|
] |
|
) |
|
self.norm = Ernie4_5_RMSNorm(config) |
|
self.rotary_emb = Ernie4_5_RopeEmbedding(config=config) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
"""Get the input embedding layer.""" |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
"""Set new input embeddings.""" |
|
self.embed_tokens = value |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**flash_attn_kwargs: Unpack[FlashAttentionKwargs], |
|
): |
|
"""Forward pass through the ERNIE model.""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = DynamicCache() |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
inputs_embeds = inputs_embeds.to(self.embed_tokens.weight.dtype) |
|
|
|
if cache_position is None: |
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
cache_position = torch.arange( |
|
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device |
|
) |
|
if position_ids is None: |
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
causal_mask = self._update_causal_mask( |
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
all_router_loss = torch.tensor(0.0, device=inputs_embeds.device) if self.config.use_moe else None |
|
all_gate_logits = () |
|
|
|
for decoder_layer in self.layers: |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
partial(decoder_layer.__call__, **flash_attn_kwargs), |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
position_embeddings, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
causal_mask, |
|
position_ids, |
|
past_key_values, |
|
output_attentions, |
|
use_cache, |
|
cache_position, |
|
position_embeddings, |
|
**flash_attn_kwargs, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
if self.config.use_moe: |
|
layer_outputs, gate_logits = layer_outputs[:-1], layer_outputs[-1] |
|
all_gate_logits = all_gate_logits + (gate_logits,) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
return Erine4_5_MoeModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
router_loss=all_router_loss, |
|
gate_logits=all_gate_logits, |
|
) |
|
|
|
def _update_causal_mask( |
|
self, |
|
attention_mask: Union[torch.Tensor, "BlockMask"], |
|
input_tensor: torch.Tensor, |
|
cache_position: torch.Tensor, |
|
past_key_values: Cache, |
|
output_attentions: bool = False, |
|
): |
|
if self.config._attn_implementation == "flash_attention_2": |
|
if attention_mask is not None and past_key_values is not None: |
|
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0] |
|
if is_padding_right: |
|
raise ValueError( |
|
"You are attempting to perform batched generation with padding_side='right'" |
|
" this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to " |
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. " |
|
) |
|
if attention_mask is not None and 0.0 in attention_mask: |
|
return attention_mask |
|
return None |
|
if self.config._attn_implementation == "flex_attention": |
|
if isinstance(attention_mask, torch.Tensor): |
|
attention_mask = make_flex_block_causal_mask(attention_mask) |
|
return attention_mask |
|
|
|
|
|
|
|
|
|
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
using_static_cache = isinstance(past_key_values, StaticCache) |
|
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache) |
|
|
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and not (using_static_cache or using_sliding_window_cache) |
|
and not output_attentions |
|
): |
|
if AttentionMaskConverter._ignore_causal_mask_sdpa( |
|
attention_mask, |
|
inputs_embeds=input_tensor, |
|
past_key_values_length=past_seen_tokens, |
|
sliding_window=self.config.sliding_window, |
|
is_training=self.training, |
|
): |
|
return None |
|
|
|
dtype = input_tensor.dtype |
|
min_dtype = torch.finfo(dtype).min |
|
sequence_length = input_tensor.shape[1] |
|
|
|
if using_sliding_window_cache or using_static_cache: |
|
target_length = past_key_values.get_max_cache_shape() |
|
|
|
else: |
|
target_length = ( |
|
attention_mask.shape[-1] |
|
if isinstance(attention_mask, torch.Tensor) |
|
else past_seen_tokens + sequence_length + 1 |
|
) |
|
|
|
|
|
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=target_length, |
|
dtype=dtype, |
|
cache_position=cache_position, |
|
batch_size=input_tensor.shape[0], |
|
config=self.config, |
|
past_key_values=past_key_values, |
|
) |
|
|
|
if ( |
|
self.config._attn_implementation == "sdpa" |
|
and attention_mask is not None |
|
and attention_mask.device.type in ["cuda", "xpu", "npu"] |
|
and not output_attentions |
|
): |
|
|
|
|
|
|
|
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) |
|
|
|
return causal_mask |
|
|
|
@staticmethod |
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
config: Ernie4_5_MoeConfig, |
|
past_key_values: Cache, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
config (`Ernie4_5_MoeConfig`): |
|
The model's configuration class |
|
past_key_values (`Cache`): |
|
The cache class that is being used currently to generate |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
min_dtype = torch.finfo(dtype).min |
|
causal_mask = torch.full( |
|
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device |
|
) |
|
diagonal_attend_mask = torch.arange(target_length, device=cache_position.device) > cache_position.reshape( |
|
-1, 1 |
|
) |
|
text_config = config.get_text_config() |
|
if getattr(text_config, "use_sliding_window", True) and text_config.sliding_window is not None: |
|
|
|
|
|
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length: |
|
sliding_attend_mask = torch.arange(target_length, device=cache_position.device) <= ( |
|
cache_position.reshape(-1, 1) - text_config.sliding_window |
|
) |
|
diagonal_attend_mask.bitwise_or_(sliding_attend_mask) |
|
causal_mask *= diagonal_attend_mask |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
if attention_mask.shape[-1] > target_length: |
|
attention_mask = attention_mask[:, :target_length] |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( |
|
causal_mask.device |
|
) |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
return causal_mask |
|
|
|
@auto_docstring |
|
class Ernie4_5_MoeForCausalLM(Ernie4_5_PretrainedModel,GenerationMixin): |
|
"""ERNIE Mixture of Experts (MoE) model for causal language modeling.""" |
|
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
def __init__(self, config): |
|
""" |
|
Initializes the ERNIE MoE model for causal language modeling. |
|
|
|
Args: |
|
config (dict): Model configuration. |
|
""" |
|
super().__init__(config) |
|
self.config = config |
|
self.model = Ernie4_5_Model(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size,bias=config.weight_share_add_bias and config.use_bias) |
|
self.loss_function = ErniePretrainingCriterion(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
"""Returns the input embeddings layer.""" |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
"""Sets the input embeddings layer.""" |
|
self.ernie.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
"""Returns the output embeddings (LM head).""" |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
"""Sets the output embeddings layer.""" |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
"""Sets the ERNIE decoder model.""" |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
"""Get the transformer decoder.""" |
|
return self.model |
|
|
|
@can_return_tuple |
|
def forward( |
|
self, |
|
input_ids, |
|
attention_mask=None, |
|
position_ids=None, |
|
past_key_values: Optional[list[torch.FloatTensor]] = None, |
|
inputs_embeds=None, |
|
labels=None, |
|
loss_mask=None, |
|
use_cache=False, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
**kwargs: Unpack[KwargsForCausalLM], |
|
): |
|
""" |
|
Forward pass for causal language modeling. |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
outputs = self.model( |
|
input_ids, |
|
position_ids=position_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
past_key_values=past_key_values, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
logits = self.lm_head(hidden_states) |
|
|
|
loss, router_loss = None, None |
|
if getattr(self.config, "use_moe", False): |
|
router_loss = outputs.router_loss |
|
|
|
if labels is not None: |
|
loss, _ = self.loss_function(logits, labels, loss_mask, router_loss) |
|
|
|
return Ernie4_5_MoeCausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
router_loss=router_loss, |
|
) |
|
|
|
|
|
|
|
__all__ = [ |
|
"Ernie4_5_Model", |
|
"Ernie4_5_MoeForCausalLM", |
|
"Ernie4_5_PretrainedModel" |
|
] |