File size: 8,384 Bytes
a814953 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# Copyright (c) 2025 Baidu, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Ernie4_5_Moe model configuration"""
from transformers import PretrainedConfig
class Ernie4_5_MoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Ernie4_5_Model`].
It is used to instantiate an ERNIE-4.5 model according to the specified arguments,
defining the model architecture. Instantiating a configuration with the defaults
will yield a similar configuration to that of ERNIE-4.5-300B-A47B-PT [baidu/ERNIE-4.5-300B-A47B-PT].
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (int): Size of the vocabulary (number of unique tokens)
hidden_size (int): Dimensionality of the encoder layers and the pooler layer
intermediate_size (int): Dimensionality of the "intermediate" (feed-forward) layer
max_position_embeddings (int): Maximum sequence length the model can handle
num_hidden_layers (int): Number of hidden layers in the Transformer encoder
num_attention_heads (int): Number of attention heads for each attention layer
rms_norm_eps (float): The epsilon used by the RMS normalization layers
use_cache (bool): Whether to use caching for faster generation (decoding)
use_flash_attention (bool): Whether to use FlashAttention for optimized attention computation
pad_token_id (int): Token ID used for padding sequences
bos_token_id (int): Token ID used for beginning-of-sequence
eos_token_id (int): Token ID used for end-of-sequence
use_bias (bool): Whether to use bias terms in linear layers
rope_theta (float): The base period of the RoPE embeddings
weight_share_add_bias (bool): Whether to share bias weights in certain layers
ignored_index (int): Target value that is ignored during loss computation
attention_probs_dropout_prob (float): Dropout probability for attention weights
hidden_dropout_prob (float): Dropout probability for hidden layers
num_key_value_heads (int): Number of key/value heads (for Grouped Query Attention)
max_sequence_length (int): Maximum sequence length for positional embeddings
moe_num_experts: Number of experts in MoE layers
moe_capacity: Capacity configuration for MoE layers
moe_layer_interval: Interval between MoE layers
moe_layer_start_index: Starting layer index for MoE
moe_layer_end_index: Ending layer index for MoE (-1 means last layer)
sinkhorn_2gate: Whether to use sinkhorn 2-gate routing
sinkhorn_temp: Temperature for sinkhorn routing
moe_dropout_prob: Dropout probability for MoE layers
moe_gate: Type of gating mechanism ('top2', etc.)
moe_intermediate_size: Intermediate size for MoE layers
moe_gate_act: Activation function for gating
moe_k: Number of experts to route to
**kwargs: Additional base model configuration parameters
"""
model_type = "ernie4_5_moe"
use_keep_in_fp32_modules = True
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"n_positions": "max_position_embeddings",
"n_embd": "hidden_size",
"n_layer": "num_hidden_layers",
"n_head": "num_attention_heads",
"n_inner": "intermediate_size",
"activation_function": "hidden_act",
}
# Default tensor parallel plan for base model `ernie_4_5_moe`
base_model_tp_plan = {
"model.layers.*.self_attn.q_proj": "colwise_rep",
"model.layers.*.self_attn.k_proj": "colwise_rep",
"model.layers.*.self_attn.v_proj": "colwise_rep",
"model.layers.*.self_attn.o_proj": "rowwise_rep",
"model.layers.*.mlp.experts.*.gate_proj": "colwise",
"model.layers.*.mlp.experts.*.up_proj": "colwise",
"model.layers.*.mlp.experts.*.down_proj": "rowwise",
"model.layers.*.mlp.gate_proj": "colwise",
"model.layers.*.mlp.up_proj": "colwise",
"model.layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=32000,
hidden_size=768,
intermediate_size=11008,
num_hidden_layers=2,
num_attention_heads=2,
num_key_value_heads=None,
max_position_embeddings=32768,
use_sliding_window=None,
sliding_window=None,
rms_norm_eps=1e-6,
use_cache=False,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
attention_probs_dropout_prob=0.0,
hidden_dropout_prob=0.0,
rope_theta=10000.0,
use_flash_attention=False,
use_rmsnorm=True,
use_bias=False,
weight_share_add_bias=True,
max_sequence_length=None,
ignored_index=-100,
use_moe=True,
moe_num_experts=64,
moe_capacity=(64, 64, 64),
moe_layer_interval=2,
moe_layer_start_index=0,
moe_layer_end_index=-1,
sinkhorn_2gate=True,
sinkhorn_temp=3e-2,
moe_dropout_prob=0.0,
moe_gate="top2",
moe_intermediate_size=3584,
moe_k=2,
moe_gate_act="softmax",
moe_use_aux_free=False,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.use_rmsnorm = use_rmsnorm
self.rms_norm_eps = rms_norm_eps
self.rope_theta = rope_theta
self.max_sequence_length = max_sequence_length
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.ignored_index = ignored_index
self.use_cache = use_cache
self.use_bias = use_bias
self.weight_share_add_bias = weight_share_add_bias
self.use_flash_attention = use_flash_attention
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.hidden_dropout_prob = hidden_dropout_prob
self.use_moe = moe_num_experts > 0 and use_moe
self.moe_num_experts = moe_num_experts
self.moe_capacity = moe_capacity
self.sinkhorn_2gate = sinkhorn_2gate
self.sinkhorn_temp = sinkhorn_temp
self.moe_layer_interval = moe_layer_interval
self.moe_dropout_prob = moe_dropout_prob
self.moe_gate = moe_gate
self.moe_intermediate_size = moe_intermediate_size
self.moe_k = moe_k
self.moe_layer_start_index = moe_layer_start_index
self.moe_layer_end_index = self.num_hidden_layers - 1 if moe_layer_end_index == -1 else moe_layer_end_index
self.moe_gate_act = moe_gate_act
self.moe_use_aux_free = moe_use_aux_free
# Set default for tied embeddings if not specified.
if "tie_word_embeddings" not in kwargs:
kwargs["tie_word_embeddings"] = False
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
|