Update README.md
Browse files
README.md
CHANGED
@@ -32,6 +32,10 @@ library_name: transformers
|
|
32 |
|
33 |
# ERNIE-4.5-300B-A47B
|
34 |
|
|
|
|
|
|
|
|
|
35 |
## ERNIE 4.5 Highlights
|
36 |
|
37 |
The advanced capabilities of the ERNIE 4.5 models, particularly the MoE-based A47B and A3B series, are underpinned by several key technical innovations:
|
@@ -59,92 +63,6 @@ ERNIE-4.5-300B-A47B is a text MoE Post-trained model, with 300B total parameters
|
|
59 |
|
60 |
## Quickstart
|
61 |
|
62 |
-
### Model Finetuning with ERNIEKit
|
63 |
-
|
64 |
-
[ERNIEKit](https://github.com/PaddlePaddle/ERNIE) is a training toolkit based on PaddlePaddle, specifically designed for the ERNIE series of open-source large models. It provides comprehensive support for scenarios such as instruction fine-tuning (SFT, LoRA) and alignment training (DPO), ensuring optimal performance.
|
65 |
-
|
66 |
-
Usage Examples:
|
67 |
-
|
68 |
-
```bash
|
69 |
-
# Download model
|
70 |
-
huggingface-cli download baidu/ERNIE-4.5-300B-A47B-Paddle --local-dir baidu/ERNIE-4.5-300B-A47B-Paddle
|
71 |
-
# SFT
|
72 |
-
erniekit train examples/configs/ERNIE-4.5-300B-A47B/sft/run_sft_wint8mix_lora_8k.yaml
|
73 |
-
# DPO
|
74 |
-
erniekit train examples/configs/ERNIE-4.5-300B-A47B/dpo/run_dpo_wint8mix_lora_8k.yaml
|
75 |
-
```
|
76 |
-
|
77 |
-
For more detailed examples, including SFT with LoRA, multi-GPU configurations, and advanced scripts, please refer to the examples folder within the [ERNIEKit](https://github.com/PaddlePaddle/ERNIE) repository.
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
### Using FastDeploy
|
83 |
-
|
84 |
-
Service deployment can be quickly completed using FastDeploy in the following command. For more detailed usage instructions, please refer to the [FastDeploy Repository](https://github.com/PaddlePaddle/FastDeploy).
|
85 |
-
|
86 |
-
**Note**: To deploy on a configuration with 4 GPUs each having at least 80G of memory, specify ```--quantization wint4```. If you specify ```--quantization wint8```, then resources for 8 GPUs are required.
|
87 |
-
|
88 |
-
```bash
|
89 |
-
python -m fastdeploy.entrypoints.openai.api_server \
|
90 |
-
--model baidu/ERNIE-4.5-300B-A47B-Paddle \
|
91 |
-
--port 8180 \
|
92 |
-
--metrics-port 8181 \
|
93 |
-
--quantization wint4 \
|
94 |
-
--tensor-parallel-size 8 \
|
95 |
-
--engine-worker-queue-port 8182 \
|
96 |
-
--max-model-len 32768 \
|
97 |
-
--max-num-seqs 32
|
98 |
-
```
|
99 |
-
|
100 |
-
To deploy the W4A8C8 quantized version using FastDeploy, you can run the following command.
|
101 |
-
|
102 |
-
```bash
|
103 |
-
python -m fastdeploy.entrypoints.openai.api_server \
|
104 |
-
--model baidu/ERNIE-4.5-300B-A47B-W4A8C8-TP4-Paddle \
|
105 |
-
--port 8180 \
|
106 |
-
--metrics-port 8181 \
|
107 |
-
--engine-worker-queue-port 8182 \
|
108 |
-
--tensor-parallel-size 4 \
|
109 |
-
--max-model-len 32768 \
|
110 |
-
--max-num-seqs 32
|
111 |
-
```
|
112 |
-
|
113 |
-
To deploy the WINT2 quantized version using FastDeploy on a single 141G GPU, you can run the following command.
|
114 |
-
|
115 |
-
```bash
|
116 |
-
python -m fastdeploy.entrypoints.openai.api_server \
|
117 |
-
--model "baidu/ERNIE-4.5-300B-A47B-2Bits-Paddle" \
|
118 |
-
--port 8180 \
|
119 |
-
--metrics-port 8181 \
|
120 |
-
--engine-worker-queue-port 8182 \
|
121 |
-
--tensor-parallel-size 1 \
|
122 |
-
--max-model-len 32768 \
|
123 |
-
--max-num-seqs 128
|
124 |
-
```
|
125 |
-
|
126 |
-
The following contains a code snippet illustrating how to use ERNIE-4.5-300B-A47B-FP8 generate content based on given inputs.
|
127 |
-
|
128 |
-
```python
|
129 |
-
from fastdeploy import LLM, SamplingParams
|
130 |
-
|
131 |
-
prompts = [
|
132 |
-
"Hello, my name is",
|
133 |
-
]
|
134 |
-
|
135 |
-
sampling_params = SamplingParams(temperature=0.8, top_p=0.95, max_tokens=128)
|
136 |
-
|
137 |
-
model = "baidu/ERNIE-4.5-300B-A47B-FP8-Paddle"
|
138 |
-
llm = LLM(model=model, tensor_parallel_size=8, max_model_len=8192, num_gpu_blocks_override=1024, engine_worker_queue_port=9981)
|
139 |
-
|
140 |
-
outputs = llm.generate(prompts, sampling_params)
|
141 |
-
|
142 |
-
for output in outputs:
|
143 |
-
prompt = output.prompt
|
144 |
-
generated_text = output.outputs.text
|
145 |
-
print("generated_text", generated_text)
|
146 |
-
```
|
147 |
-
|
148 |
### Using `transformers` library
|
149 |
|
150 |
**Note**: Before using the model, please ensure you have the `transformers` library installed (version 4.50.0 or higher)
|
|
|
32 |
|
33 |
# ERNIE-4.5-300B-A47B
|
34 |
|
35 |
+
> [!NOTE]
|
36 |
+
> Note: "**-Paddle**" models use [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) weights, while "**-PT**" models use Transformer-style PyTorch weights.
|
37 |
+
|
38 |
+
|
39 |
## ERNIE 4.5 Highlights
|
40 |
|
41 |
The advanced capabilities of the ERNIE 4.5 models, particularly the MoE-based A47B and A3B series, are underpinned by several key technical innovations:
|
|
|
63 |
|
64 |
## Quickstart
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
### Using `transformers` library
|
67 |
|
68 |
**Note**: Before using the model, please ensure you have the `transformers` library installed (version 4.50.0 or higher)
|