baris-yazici commited on
Commit
eaa54e4
·
verified ·
1 Parent(s): ef2b33e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -26
README.md CHANGED
@@ -3,7 +3,7 @@ library_name: transformers
3
  language:
4
  - en
5
  metrics:
6
- - accuracy: 62.3 % accuracy on the 2-label liar test set. Trained on 2 epochs.
7
  pipeline_tag: text-classification
8
  ---
9
 
@@ -12,49 +12,30 @@ pipeline_tag: text-classification
12
  This model classifies news statements as true or false.
13
 
14
 
15
-
16
  ## Model Details
17
 
18
  ### Model Description
19
 
20
- <!-- Provide a longer summary of what this model is. -->
21
-
22
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
23
 
24
- - **Developed by:** [More Information Needed]
25
- - **Funded by [optional]:** [More Information Needed]
26
- - **Shared by [optional]:** [More Information Needed]
27
- - **Model type:** [More Information Needed]
28
- - **Language(s) (NLP):** English
29
- - **License:** [More Information Needed]
30
- - **Finetuned from model [optional]:** https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
31
-
32
- ### Model Sources [optional]
33
-
34
- <!-- Provide the basic links for the model. -->
35
-
36
- - **Repository:** [More Information Needed]
37
- - **Paper [optional]:** [More Information Needed]
38
- - **Demo [optional]:** [More Information Needed]
39
-
40
 
41
  ## How to Get Started with the Model
42
 
43
  Use the code below to get started with the model.
44
 
 
45
  from peft import AutoPeftModelForCausalLM
46
 
47
  model = AutoPeftModelForCausalLM.from_pretrained("baris-yazici/liar_stabilityai_stablelm-2-zephyr-1_6b_PROMPT_TUNING_CAUSAL_LM").to("cuda")
48
  tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-zephyr-1_6b")
 
49
 
50
  ## Training Details
51
 
52
  ### Training Data
53
-
54
- https://huggingface.co/datasets/liar
55
-
56
- [More Information Needed]
57
 
58
  ### Training Procedure
59
-
60
- https://huggingface.co/docs/peft/task_guides/prompt_based_methods
 
3
  language:
4
  - en
5
  metrics:
6
+ - accuracy: 62.3 % accuracy on the 2-label liar test set.
7
  pipeline_tag: text-classification
8
  ---
9
 
 
12
  This model classifies news statements as true or false.
13
 
14
 
 
15
  ## Model Details
16
 
17
  ### Model Description
18
 
 
 
19
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
20
 
21
+ - **Finetuned from model [https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b]:**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
  ## How to Get Started with the Model
24
 
25
  Use the code below to get started with the model.
26
 
27
+ ```python
28
  from peft import AutoPeftModelForCausalLM
29
 
30
  model = AutoPeftModelForCausalLM.from_pretrained("baris-yazici/liar_stabilityai_stablelm-2-zephyr-1_6b_PROMPT_TUNING_CAUSAL_LM").to("cuda")
31
  tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-zephyr-1_6b")
32
+ ```
33
 
34
  ## Training Details
35
 
36
  ### Training Data
37
+ The liar dataset can be accessed from [Link](https://huggingface.co/datasets/liar).
 
 
 
38
 
39
  ### Training Procedure
40
+ Prompt tuning was used [link] (https://huggingface.co/docs/peft/task_guides/prompt_based_methods).
41
+ Trained on 2 epochs due to computational limitations.