Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
quantized_by: bartowski
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
---
|
5 |
+
|
6 |
+
## Llamacpp imatrix Quantizations of GemmaCoder3-12B by burtenshaw
|
7 |
+
|
8 |
+
Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b5010">b5010</a> for quantization.
|
9 |
+
|
10 |
+
Original model: https://huggingface.co/burtenshaw/GemmaCoder3-12B
|
11 |
+
|
12 |
+
All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
|
13 |
+
|
14 |
+
Run them in [LM Studio](https://lmstudio.ai/)
|
15 |
+
|
16 |
+
Run them directly with [llama.cpp](https://github.com/ggerganov/llama.cpp), or any other llama.cpp based project
|
17 |
+
|
18 |
+
## Prompt format
|
19 |
+
|
20 |
+
```
|
21 |
+
<bos><start_of_turn>user
|
22 |
+
{system_prompt}
|
23 |
+
|
24 |
+
{prompt}<end_of_turn>
|
25 |
+
<start_of_turn>model
|
26 |
+
<end_of_turn>
|
27 |
+
<start_of_turn>model
|
28 |
+
```
|
29 |
+
|
30 |
+
## Download a file (not the whole branch) from below:
|
31 |
+
|
32 |
+
| Filename | Quant type | File Size | Split | Description |
|
33 |
+
| -------- | ---------- | --------- | ----- | ----------- |
|
34 |
+
| [GemmaCoder3-12B-bf16.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-bf16.gguf) | bf16 | 23.54GB | false | Full BF16 weights. |
|
35 |
+
| [GemmaCoder3-12B-Q8_0.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q8_0.gguf) | Q8_0 | 12.51GB | false | Extremely high quality, generally unneeded but max available quant. |
|
36 |
+
| [GemmaCoder3-12B-Q6_K_L.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q6_K_L.gguf) | Q6_K_L | 9.90GB | false | Uses Q8_0 for embed and output weights. Very high quality, near perfect, *recommended*. |
|
37 |
+
| [GemmaCoder3-12B-Q6_K.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q6_K.gguf) | Q6_K | 9.66GB | false | Very high quality, near perfect, *recommended*. |
|
38 |
+
| [GemmaCoder3-12B-Q5_K_L.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q5_K_L.gguf) | Q5_K_L | 8.69GB | false | Uses Q8_0 for embed and output weights. High quality, *recommended*. |
|
39 |
+
| [GemmaCoder3-12B-Q5_K_M.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q5_K_M.gguf) | Q5_K_M | 8.45GB | false | High quality, *recommended*. |
|
40 |
+
| [GemmaCoder3-12B-Q5_K_S.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q5_K_S.gguf) | Q5_K_S | 8.23GB | false | High quality, *recommended*. |
|
41 |
+
| [GemmaCoder3-12B-Q4_1.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q4_1.gguf) | Q4_1 | 7.56GB | false | Legacy format, similar performance to Q4_K_S but with improved tokens/watt on Apple silicon. |
|
42 |
+
| [GemmaCoder3-12B-Q4_K_L.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q4_K_L.gguf) | Q4_K_L | 7.54GB | false | Uses Q8_0 for embed and output weights. Good quality, *recommended*. |
|
43 |
+
| [GemmaCoder3-12B-Q4_K_M.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q4_K_M.gguf) | Q4_K_M | 7.30GB | false | Good quality, default size for most use cases, *recommended*. |
|
44 |
+
| [GemmaCoder3-12B-Q4_K_S.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q4_K_S.gguf) | Q4_K_S | 6.94GB | false | Slightly lower quality with more space savings, *recommended*. |
|
45 |
+
| [GemmaCoder3-12B-Q4_0.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q4_0.gguf) | Q4_0 | 6.91GB | false | Legacy format, offers online repacking for ARM and AVX CPU inference. |
|
46 |
+
| [GemmaCoder3-12B-IQ4_NL.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-IQ4_NL.gguf) | IQ4_NL | 6.89GB | false | Similar to IQ4_XS, but slightly larger. Offers online repacking for ARM CPU inference. |
|
47 |
+
| [GemmaCoder3-12B-Q3_K_XL.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q3_K_XL.gguf) | Q3_K_XL | 6.72GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
|
48 |
+
| [GemmaCoder3-12B-IQ4_XS.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-IQ4_XS.gguf) | IQ4_XS | 6.55GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
|
49 |
+
| [GemmaCoder3-12B-Q3_K_L.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q3_K_L.gguf) | Q3_K_L | 6.48GB | false | Lower quality but usable, good for low RAM availability. |
|
50 |
+
| [GemmaCoder3-12B-Q3_K_M.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q3_K_M.gguf) | Q3_K_M | 6.01GB | false | Low quality. |
|
51 |
+
| [GemmaCoder3-12B-IQ3_M.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-IQ3_M.gguf) | IQ3_M | 5.66GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
|
52 |
+
| [GemmaCoder3-12B-Q3_K_S.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q3_K_S.gguf) | Q3_K_S | 5.46GB | false | Low quality, not recommended. |
|
53 |
+
| [GemmaCoder3-12B-IQ3_XS.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-IQ3_XS.gguf) | IQ3_XS | 5.21GB | false | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
|
54 |
+
| [GemmaCoder3-12B-Q2_K_L.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q2_K_L.gguf) | Q2_K_L | 5.01GB | false | Uses Q8_0 for embed and output weights. Very low quality but surprisingly usable. |
|
55 |
+
| [GemmaCoder3-12B-IQ3_XXS.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-IQ3_XXS.gguf) | IQ3_XXS | 4.78GB | false | Lower quality, new method with decent performance, comparable to Q3 quants. |
|
56 |
+
| [GemmaCoder3-12B-Q2_K.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-Q2_K.gguf) | Q2_K | 4.77GB | false | Very low quality but surprisingly usable. |
|
57 |
+
| [GemmaCoder3-12B-IQ2_M.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-IQ2_M.gguf) | IQ2_M | 4.31GB | false | Relatively low quality, uses SOTA techniques to be surprisingly usable. |
|
58 |
+
| [GemmaCoder3-12B-IQ2_S.gguf](https://huggingface.co/bartowski/burtenshaw_GemmaCoder3-12B-GGUF/blob/main/burtenshaw_GemmaCoder3-12B-IQ2_S.gguf) | IQ2_S | 4.02GB | false | Low quality, uses SOTA techniques to be usable. |
|
59 |
+
|
60 |
+
## Embed/output weights
|
61 |
+
|
62 |
+
Some of these quants (Q3_K_XL, Q4_K_L etc) are the standard quantization method with the embeddings and output weights quantized to Q8_0 instead of what they would normally default to.
|
63 |
+
|
64 |
+
## Downloading using huggingface-cli
|
65 |
+
|
66 |
+
<details>
|
67 |
+
<summary>Click to view download instructions</summary>
|
68 |
+
|
69 |
+
First, make sure you have hugginface-cli installed:
|
70 |
+
|
71 |
+
```
|
72 |
+
pip install -U "huggingface_hub[cli]"
|
73 |
+
```
|
74 |
+
|
75 |
+
Then, you can target the specific file you want:
|
76 |
+
|
77 |
+
```
|
78 |
+
huggingface-cli download bartowski/burtenshaw_GemmaCoder3-12B-GGUF --include "burtenshaw_GemmaCoder3-12B-Q4_K_M.gguf" --local-dir ./
|
79 |
+
```
|
80 |
+
|
81 |
+
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
|
82 |
+
|
83 |
+
```
|
84 |
+
huggingface-cli download bartowski/burtenshaw_GemmaCoder3-12B-GGUF --include "burtenshaw_GemmaCoder3-12B-Q8_0/*" --local-dir ./
|
85 |
+
```
|
86 |
+
|
87 |
+
You can either specify a new local-dir (burtenshaw_GemmaCoder3-12B-Q8_0) or download them all in place (./)
|
88 |
+
|
89 |
+
</details>
|
90 |
+
|
91 |
+
## ARM/AVX information
|
92 |
+
|
93 |
+
Previously, you would download Q4_0_4_4/4_8/8_8, and these would have their weights interleaved in memory in order to improve performance on ARM and AVX machines by loading up more data in one pass.
|
94 |
+
|
95 |
+
Now, however, there is something called "online repacking" for weights. details in [this PR](https://github.com/ggerganov/llama.cpp/pull/9921). If you use Q4_0 and your hardware would benefit from repacking weights, it will do it automatically on the fly.
|
96 |
+
|
97 |
+
As of llama.cpp build [b4282](https://github.com/ggerganov/llama.cpp/releases/tag/b4282) you will not be able to run the Q4_0_X_X files and will instead need to use Q4_0.
|
98 |
+
|
99 |
+
Additionally, if you want to get slightly better quality for , you can use IQ4_NL thanks to [this PR](https://github.com/ggerganov/llama.cpp/pull/10541) which will also repack the weights for ARM, though only the 4_4 for now. The loading time may be slower but it will result in an overall speed incrase.
|
100 |
+
|
101 |
+
<details>
|
102 |
+
<summary>Click to view Q4_0_X_X information (deprecated</summary>
|
103 |
+
|
104 |
+
I'm keeping this section to show the potential theoretical uplift in performance from using the Q4_0 with online repacking.
|
105 |
+
|
106 |
+
<details>
|
107 |
+
<summary>Click to view benchmarks on an AVX2 system (EPYC7702)</summary>
|
108 |
+
|
109 |
+
| model | size | params | backend | threads | test | t/s | % (vs Q4_0) |
|
110 |
+
| ------------------------------ | ---------: | ---------: | ---------- | ------: | ------------: | -------------------: |-------------: |
|
111 |
+
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp512 | 204.03 ± 1.03 | 100% |
|
112 |
+
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp1024 | 282.92 ± 0.19 | 100% |
|
113 |
+
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | pp2048 | 259.49 ± 0.44 | 100% |
|
114 |
+
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg128 | 39.12 ± 0.27 | 100% |
|
115 |
+
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg256 | 39.31 ± 0.69 | 100% |
|
116 |
+
| qwen2 3B Q4_0 | 1.70 GiB | 3.09 B | CPU | 64 | tg512 | 40.52 ± 0.03 | 100% |
|
117 |
+
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp512 | 301.02 ± 1.74 | 147% |
|
118 |
+
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp1024 | 287.23 ± 0.20 | 101% |
|
119 |
+
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | pp2048 | 262.77 ± 1.81 | 101% |
|
120 |
+
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg128 | 18.80 ± 0.99 | 48% |
|
121 |
+
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg256 | 24.46 ± 3.04 | 83% |
|
122 |
+
| qwen2 3B Q4_K_M | 1.79 GiB | 3.09 B | CPU | 64 | tg512 | 36.32 ± 3.59 | 90% |
|
123 |
+
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp512 | 271.71 ± 3.53 | 133% |
|
124 |
+
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp1024 | 279.86 ± 45.63 | 100% |
|
125 |
+
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | pp2048 | 320.77 ± 5.00 | 124% |
|
126 |
+
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg128 | 43.51 ± 0.05 | 111% |
|
127 |
+
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg256 | 43.35 ± 0.09 | 110% |
|
128 |
+
| qwen2 3B Q4_0_8_8 | 1.69 GiB | 3.09 B | CPU | 64 | tg512 | 42.60 ± 0.31 | 105% |
|
129 |
+
|
130 |
+
Q4_0_8_8 offers a nice bump to prompt processing and a small bump to text generation
|
131 |
+
|
132 |
+
</details>
|
133 |
+
|
134 |
+
</details>
|
135 |
+
|
136 |
+
## Which file should I choose?
|
137 |
+
|
138 |
+
<details>
|
139 |
+
<summary>Click here for details</summary>
|
140 |
+
|
141 |
+
A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
|
142 |
+
|
143 |
+
The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
|
144 |
+
|
145 |
+
If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
|
146 |
+
|
147 |
+
If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
|
148 |
+
|
149 |
+
Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
|
150 |
+
|
151 |
+
If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
|
152 |
+
|
153 |
+
If you want to get more into the weeds, you can check out this extremely useful feature chart:
|
154 |
+
|
155 |
+
[llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
|
156 |
+
|
157 |
+
But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
|
158 |
+
|
159 |
+
These I-quants can also be used on CPU, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
|
160 |
+
|
161 |
+
</details>
|
162 |
+
|
163 |
+
## Credits
|
164 |
+
|
165 |
+
Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset.
|
166 |
+
|
167 |
+
Thank you ZeroWw for the inspiration to experiment with embed/output.
|
168 |
+
|
169 |
+
Thank you to LM Studio for sponsoring my work.
|
170 |
+
|
171 |
+
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
|