File size: 12,872 Bytes
f6d85d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
---
library_name: peft
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: my-lora-sum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my-lora-sum

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.3452
- Rouge1: 2.9750
- Rouge2: 0.0640
- Rougel: 2.8027
- Rougelsum: 2.8035

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 23.6472       | 0.0160 | 5    | 11.7512         | 0.4881 | 0.0353 | 0.4380 | 0.4362    |
| 21.3789       | 0.0319 | 10   | 11.7109         | 0.4912 | 0.0353 | 0.4526 | 0.4486    |
| 19.719        | 0.0479 | 15   | 11.6279         | 0.5005 | 0.0432 | 0.4531 | 0.4477    |
| 22.2901       | 0.0639 | 20   | 11.6000         | 0.4946 | 0.0319 | 0.4410 | 0.4381    |
| 19.6455       | 0.0799 | 25   | 11.5404         | 0.5263 | 0.0530 | 0.4856 | 0.4833    |
| 19.892        | 0.0958 | 30   | 11.5011         | 0.5202 | 0.0396 | 0.4798 | 0.4716    |
| 19.8908       | 0.1118 | 35   | 11.4428         | 0.5431 | 0.0429 | 0.5013 | 0.4933    |
| 21.5179       | 0.1278 | 40   | 11.4066         | 0.5156 | 0.0405 | 0.4717 | 0.4682    |
| 21.7581       | 0.1438 | 45   | 11.3629         | 0.5416 | 0.0325 | 0.4834 | 0.4787    |
| 20.9988       | 0.1597 | 50   | 11.2869         | 0.5288 | 0.0270 | 0.4752 | 0.4743    |
| 21.3311       | 0.1757 | 55   | 11.2290         | 0.5260 | 0.0223 | 0.4642 | 0.4629    |
| 23.6669       | 0.1917 | 60   | 11.1785         | 0.4932 | 0.0188 | 0.4345 | 0.4307    |
| 18.2309       | 0.2077 | 65   | 11.1129         | 0.4645 | 0.0193 | 0.4156 | 0.4170    |
| 20.9785       | 0.2236 | 70   | 11.0331         | 0.5031 | 0.0238 | 0.4532 | 0.4530    |
| 16.4643       | 0.2396 | 75   | 10.9403         | 0.4414 | 0.0177 | 0.3945 | 0.3899    |
| 16.8242       | 0.2556 | 80   | 10.8374         | 0.4631 | 0.0177 | 0.4165 | 0.4110    |
| 23.1133       | 0.2716 | 85   | 10.7508         | 0.5054 | 0.0253 | 0.4434 | 0.4380    |
| 21.1076       | 0.2875 | 90   | 10.6718         | 0.4766 | 0.0178 | 0.4129 | 0.4101    |
| 17.6879       | 0.3035 | 95   | 10.5684         | 0.5166 | 0.0212 | 0.4634 | 0.4573    |
| 19.3182       | 0.3195 | 100  | 10.4315         | 0.5774 | 0.0217 | 0.5121 | 0.5070    |
| 18.6413       | 0.3355 | 105  | 10.2988         | 0.5325 | 0.0257 | 0.4803 | 0.4803    |
| 19.9276       | 0.3514 | 110  | 10.1745         | 0.5529 | 0.0348 | 0.4877 | 0.4841    |
| 17.9226       | 0.3674 | 115  | 10.0297         | 0.5852 | 0.0432 | 0.5075 | 0.5039    |
| 15.9707       | 0.3834 | 120  | 9.8977          | 0.5779 | 0.0403 | 0.5015 | 0.4992    |
| 16.5054       | 0.3994 | 125  | 9.7266          | 0.5685 | 0.0416 | 0.5011 | 0.4963    |
| 14.6994       | 0.4153 | 130  | 9.5595          | 0.6368 | 0.0506 | 0.5492 | 0.5447    |
| 15.9555       | 0.4313 | 135  | 9.3894          | 0.6401 | 0.0438 | 0.5520 | 0.5465    |
| 14.876        | 0.4473 | 140  | 9.2403          | 0.6910 | 0.0467 | 0.5961 | 0.5929    |
| 17.3615       | 0.4633 | 145  | 9.0976          | 0.7497 | 0.0499 | 0.6499 | 0.6448    |
| 15.8582       | 0.4792 | 150  | 8.9385          | 0.7409 | 0.0383 | 0.6427 | 0.6398    |
| 14.4111       | 0.4952 | 155  | 8.7924          | 0.7075 | 0.0457 | 0.6404 | 0.6366    |
| 13.9827       | 0.5112 | 160  | 8.6373          | 0.6750 | 0.0446 | 0.6211 | 0.6173    |
| 17.1081       | 0.5272 | 165  | 8.5070          | 0.7013 | 0.0547 | 0.6479 | 0.6420    |
| 14.2012       | 0.5431 | 170  | 8.3725          | 0.7220 | 0.0544 | 0.6553 | 0.6525    |
| 13.5024       | 0.5591 | 175  | 8.2316          | 0.7125 | 0.0324 | 0.6540 | 0.6495    |
| 13.2137       | 0.5751 | 180  | 8.1178          | 0.7591 | 0.0626 | 0.6776 | 0.6720    |
| 12.6791       | 0.5911 | 185  | 8.0139          | 0.7564 | 0.0302 | 0.6845 | 0.6840    |
| 13.4419       | 0.6070 | 190  | 7.9119          | 0.7047 | 0.0277 | 0.6559 | 0.6484    |
| 13.469        | 0.6230 | 195  | 7.8019          | 0.7849 | 0.0268 | 0.7215 | 0.7189    |
| 12.8491       | 0.6390 | 200  | 7.6875          | 0.8839 | 0.0264 | 0.8145 | 0.8153    |
| 12.8009       | 0.6550 | 205  | 7.5978          | 0.9797 | 0.0375 | 0.8922 | 0.8930    |
| 13.0495       | 0.6709 | 210  | 7.5245          | 1.0712 | 0.0504 | 0.9587 | 0.9579    |
| 12.3307       | 0.6869 | 215  | 7.4464          | 1.0918 | 0.0523 | 1.0047 | 0.9994    |
| 11.1893       | 0.7029 | 220  | 7.3770          | 1.1632 | 0.0695 | 1.0571 | 1.0527    |
| 12.0019       | 0.7188 | 225  | 7.3174          | 1.1872 | 0.0522 | 1.0827 | 1.0821    |
| 10.5739       | 0.7348 | 230  | 7.2509          | 1.1771 | 0.0665 | 1.0618 | 1.0630    |
| 10.7484       | 0.7508 | 235  | 7.1847          | 1.3403 | 0.0782 | 1.1967 | 1.1933    |
| 11.0539       | 0.7668 | 240  | 7.1230          | 1.4099 | 0.1009 | 1.2615 | 1.2612    |
| 10.6808       | 0.7827 | 245  | 7.0601          | 1.5268 | 0.0882 | 1.3528 | 1.3506    |
| 10.0456       | 0.7987 | 250  | 7.0148          | 1.4664 | 0.0789 | 1.3207 | 1.3142    |
| 9.7895        | 0.8147 | 255  | 6.9850          | 1.6529 | 0.0969 | 1.4578 | 1.4445    |
| 9.3146        | 0.8307 | 260  | 6.9547          | 1.7461 | 0.0943 | 1.5750 | 1.5566    |
| 9.8935        | 0.8466 | 265  | 6.9348          | 1.9384 | 0.1090 | 1.7219 | 1.7093    |
| 9.3272        | 0.8626 | 270  | 6.9348          | 1.8664 | 0.1143 | 1.6837 | 1.6758    |
| 9.4551        | 0.8786 | 275  | 6.9497          | 2.1360 | 0.1578 | 1.9404 | 1.9297    |
| 8.7474        | 0.8946 | 280  | 6.9095          | 2.1561 | 0.1494 | 1.9453 | 1.9398    |
| 8.8361        | 0.9105 | 285  | 6.8680          | 2.1476 | 0.1304 | 1.9360 | 1.9314    |
| 10.3327       | 0.9265 | 290  | 6.8129          | 2.2233 | 0.1330 | 1.9752 | 1.9732    |
| 9.6949        | 0.9425 | 295  | 6.7423          | 2.2698 | 0.1491 | 2.0114 | 2.0057    |
| 9.2422        | 0.9585 | 300  | 6.6728          | 2.2544 | 0.1332 | 2.0282 | 2.0281    |
| 9.1457        | 0.9744 | 305  | 6.5924          | 2.1699 | 0.1038 | 1.9641 | 1.9592    |
| 8.4371        | 0.9904 | 310  | 6.5061          | 2.2267 | 0.1423 | 2.0247 | 2.0174    |
| 8.8187        | 1.0064 | 315  | 6.4224          | 2.3070 | 0.1251 | 2.1206 | 2.1144    |
| 8.6228        | 1.0224 | 320  | 6.3316          | 2.3591 | 0.1070 | 2.1583 | 2.1714    |
| 7.9446        | 1.0383 | 325  | 6.2488          | 2.3552 | 0.1209 | 2.1538 | 2.1659    |
| 7.9126        | 1.0543 | 330  | 6.1856          | 2.3870 | 0.1292 | 2.1680 | 2.1668    |
| 8.0568        | 1.0703 | 335  | 6.1166          | 2.5029 | 0.1254 | 2.2559 | 2.2636    |
| 7.5392        | 1.0863 | 340  | 6.0326          | 2.4650 | 0.1265 | 2.2809 | 2.2768    |
| 8.2361        | 1.1022 | 345  | 5.9569          | 2.4594 | 0.1041 | 2.2155 | 2.2160    |
| 7.7452        | 1.1182 | 350  | 5.8964          | 2.4663 | 0.0998 | 2.2324 | 2.2333    |
| 7.6389        | 1.1342 | 355  | 5.8526          | 2.4997 | 0.1063 | 2.2902 | 2.2822    |
| 7.6098        | 1.1502 | 360  | 5.8106          | 2.6162 | 0.1157 | 2.3610 | 2.3596    |
| 7.8916        | 1.1661 | 365  | 5.7841          | 2.5536 | 0.0968 | 2.3276 | 2.3290    |
| 7.5782        | 1.1821 | 370  | 5.7585          | 2.5692 | 0.1032 | 2.3456 | 2.3406    |
| 7.3974        | 1.1981 | 375  | 5.7402          | 2.5963 | 0.1286 | 2.3806 | 2.3711    |
| 7.0614        | 1.2141 | 380  | 5.7159          | 2.6104 | 0.0990 | 2.3693 | 2.3758    |
| 7.2043        | 1.2300 | 385  | 5.6968          | 2.6200 | 0.0934 | 2.3816 | 2.3891    |
| 6.996         | 1.2460 | 390  | 5.6787          | 2.5952 | 0.0641 | 2.4221 | 2.4286    |
| 8.2705        | 1.2620 | 395  | 5.6632          | 2.6169 | 0.0403 | 2.4257 | 2.4329    |
| 7.1852        | 1.2780 | 400  | 5.6461          | 2.5815 | 0.0522 | 2.4163 | 2.4257    |
| 7.1047        | 1.2939 | 405  | 5.6273          | 2.5892 | 0.0486 | 2.4551 | 2.4584    |
| 7.0063        | 1.3099 | 410  | 5.6064          | 2.5683 | 0.0327 | 2.4328 | 2.4334    |
| 6.8297        | 1.3259 | 415  | 5.5840          | 2.5684 | 0.0425 | 2.4205 | 2.4136    |
| 6.7474        | 1.3419 | 420  | 5.5610          | 2.5945 | 0.0279 | 2.4552 | 2.4478    |
| 7.0426        | 1.3578 | 425  | 5.5415          | 2.5908 | 0.0120 | 2.4275 | 2.4241    |
| 6.6945        | 1.3738 | 430  | 5.5259          | 2.5609 | 0.0086 | 2.4019 | 2.4040    |
| 6.8208        | 1.3898 | 435  | 5.5160          | 2.6132 | 0.0086 | 2.4673 | 2.4634    |
| 6.6174        | 1.4058 | 440  | 5.5070          | 2.6443 | 0.0187 | 2.4737 | 2.4660    |
| 6.7205        | 1.4217 | 445  | 5.4988          | 2.6701 | 0.0236 | 2.5099 | 2.4985    |
| 6.6941        | 1.4377 | 450  | 5.4915          | 2.6858 | 0.0236 | 2.5133 | 2.5047    |
| 6.5988        | 1.4537 | 455  | 5.4851          | 2.6766 | 0.0349 | 2.5185 | 2.5128    |
| 6.4683        | 1.4696 | 460  | 5.4767          | 2.6661 | 0.0347 | 2.4922 | 2.4918    |
| 6.7409        | 1.4856 | 465  | 5.4675          | 2.6519 | 0.0347 | 2.5065 | 2.5077    |
| 6.9734        | 1.5016 | 470  | 5.4599          | 2.6663 | 0.0431 | 2.5285 | 2.5313    |
| 6.7049        | 1.5176 | 475  | 5.4536          | 2.6913 | 0.0428 | 2.5617 | 2.5574    |
| 7.1744        | 1.5335 | 480  | 5.4483          | 2.7426 | 0.0469 | 2.5896 | 2.5873    |
| 6.6163        | 1.5495 | 485  | 5.4434          | 2.7223 | 0.0428 | 2.5761 | 2.5782    |
| 6.6025        | 1.5655 | 490  | 5.4381          | 2.6981 | 0.0379 | 2.5405 | 2.5406    |
| 6.4328        | 1.5815 | 495  | 5.4326          | 2.6555 | 0.0321 | 2.5019 | 2.4957    |
| 6.5182        | 1.5974 | 500  | 5.4278          | 2.7413 | 0.0445 | 2.5816 | 2.5765    |
| 6.6248        | 1.6134 | 505  | 5.4226          | 2.7559 | 0.0384 | 2.5907 | 2.5833    |
| 6.4422        | 1.6294 | 510  | 5.4180          | 2.8097 | 0.0384 | 2.6591 | 2.6516    |
| 6.3315        | 1.6454 | 515  | 5.4139          | 2.8195 | 0.0345 | 2.6772 | 2.6692    |
| 6.3602        | 1.6613 | 520  | 5.4077          | 2.8024 | 0.0435 | 2.6610 | 2.6544    |
| 6.3096        | 1.6773 | 525  | 5.4016          | 2.8611 | 0.0558 | 2.7244 | 2.7161    |
| 6.4627        | 1.6933 | 530  | 5.3956          | 2.8914 | 0.0558 | 2.7576 | 2.7547    |
| 7.0027        | 1.7093 | 535  | 5.3912          | 2.9207 | 0.0601 | 2.7619 | 2.7592    |
| 6.6364        | 1.7252 | 540  | 5.3880          | 2.9260 | 0.0601 | 2.7612 | 2.7558    |
| 6.3329        | 1.7412 | 545  | 5.3835          | 2.9258 | 0.0631 | 2.7616 | 2.7580    |
| 6.3528        | 1.7572 | 550  | 5.3783          | 2.9378 | 0.0631 | 2.7630 | 2.7573    |
| 6.3083        | 1.7732 | 555  | 5.3731          | 2.9500 | 0.0631 | 2.7680 | 2.7632    |
| 6.3824        | 1.7891 | 560  | 5.3686          | 2.9599 | 0.0681 | 2.7896 | 2.7882    |
| 6.2145        | 1.8051 | 565  | 5.3646          | 2.9371 | 0.0644 | 2.7612 | 2.7619    |
| 6.5271        | 1.8211 | 570  | 5.3605          | 2.9350 | 0.0647 | 2.7695 | 2.7717    |
| 6.5508        | 1.8371 | 575  | 5.3568          | 2.9277 | 0.0524 | 2.7676 | 2.7682    |
| 6.4093        | 1.8530 | 580  | 5.3551          | 2.9401 | 0.0524 | 2.7711 | 2.7727    |
| 6.5111        | 1.8690 | 585  | 5.3532          | 2.9682 | 0.0641 | 2.7947 | 2.7934    |
| 6.459         | 1.8850 | 590  | 5.3513          | 2.9682 | 0.0641 | 2.7946 | 2.7933    |
| 6.3278        | 1.9010 | 595  | 5.3497          | 2.9685 | 0.0641 | 2.7994 | 2.7970    |
| 6.7423        | 1.9169 | 600  | 5.3486          | 2.9733 | 0.0641 | 2.7993 | 2.7969    |
| 6.5692        | 1.9329 | 605  | 5.3476          | 2.9732 | 0.0641 | 2.8092 | 2.8055    |
| 6.3758        | 1.9489 | 610  | 5.3467          | 2.9784 | 0.0640 | 2.8074 | 2.8060    |
| 6.4735        | 1.9649 | 615  | 5.3460          | 2.9749 | 0.0640 | 2.8028 | 2.8034    |
| 6.2938        | 1.9808 | 620  | 5.3455          | 2.9749 | 0.0640 | 2.8027 | 2.8033    |
| 6.2542        | 1.9968 | 625  | 5.3452          | 2.9750 | 0.0640 | 2.8027 | 2.8035    |


### Framework versions

- PEFT 0.14.0
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0