| # LayoutXLM finetuned on XFUN.ja | |
| ```python | |
| import torch | |
| import numpy as np | |
| from PIL import Image, ImageDraw, ImageFont | |
| from pathlib import Path | |
| from itertools import chain | |
| from tqdm.notebook import tqdm | |
| from pdf2image import convert_from_path | |
| from transformers import LayoutXLMProcessor, LayoutLMv2ForTokenClassification | |
| import os | |
| os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
| labels = [ | |
| 'O', | |
| 'B-QUESTION', | |
| 'B-ANSWER', | |
| 'B-HEADER', | |
| 'I-ANSWER', | |
| 'I-QUESTION', | |
| 'I-HEADER' | |
| ] | |
| id2label = {v: k for v, k in enumerate(labels)} | |
| label2id = {k: v for v, k in enumerate(labels)} | |
| def unnormalize_box(bbox, width, height): | |
| return [ | |
| width * (bbox[0] / 1000), | |
| height * (bbox[1] / 1000), | |
| width * (bbox[2] / 1000), | |
| height * (bbox[3] / 1000), | |
| ] | |
| def iob_to_label(label): | |
| label = label[2:] | |
| if not label: | |
| return 'other' | |
| return label | |
| label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'} | |
| def infer(image, processor, model, label2color): | |
| # Use this if you're loading images | |
| # image = Image.open(img_path).convert("RGB") | |
| image = image.convert("RGB") # loading PDFs | |
| encoding = processor(image, return_offsets_mapping=True, return_tensors="pt", truncation=True, max_length=514) | |
| offset_mapping = encoding.pop('offset_mapping') | |
| outputs = model(**encoding) | |
| predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
| token_boxes = encoding.bbox.squeeze().tolist() | |
| width, height = image.size | |
| is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 | |
| true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] | |
| true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] | |
| draw = ImageDraw.Draw(image) | |
| font = ImageFont.load_default() | |
| for prediction, box in zip(true_predictions, true_boxes): | |
| predicted_label = iob_to_label(prediction).lower() | |
| draw.rectangle(box, outline=label2color[predicted_label]) | |
| draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) | |
| return image | |
| processor = LayoutXLMProcessor.from_pretrained('beomus/layoutxlm') | |
| model = LayoutLMv2ForTokenClassification.from_pretrained("beomus/layoutxlm") | |
| # imgs = [img_path for img_path in Path('/your/path/imgs/').glob('*.jpg')] | |
| imgs = [convert_from_path(img_path) for img_path in Path('/your/path/pdfs/').glob('*.pdf')] | |
| imgs = list(chain.from_iterable(imgs)) | |
| outputs = [infer(img_path, processor, model, label2color) for img_path in tqdm(imgs)] | |
| # type(outputs[0]) -> PIL.Image.Image | |
| ``` |