Improved version of conversion script Flax → PyTorch
Browse files- convert.py +22 -6
convert.py
CHANGED
|
@@ -1,13 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import jax
|
| 2 |
from jax import numpy as jnp
|
| 3 |
-
from transformers import FlaxRobertaForMaskedLM, RobertaForMaskedLM
|
|
|
|
| 4 |
|
| 5 |
def to_f32(t):
|
| 6 |
return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)
|
| 7 |
|
| 8 |
-
flax_model = FlaxRobertaForMaskedLM.from_pretrained("./")
|
| 9 |
-
flax_model.params = to_f32(flax_model.params)
|
| 10 |
-
flax_model.save_pretrained("./")
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
import tempfile
|
| 3 |
+
|
| 4 |
import jax
|
| 5 |
from jax import numpy as jnp
|
| 6 |
+
from transformers import AutoTokenizer, FlaxRobertaForMaskedLM, RobertaForMaskedLM
|
| 7 |
+
|
| 8 |
|
| 9 |
def to_f32(t):
|
| 10 |
return jax.tree_map(lambda x: x.astype(jnp.float32) if x.dtype == jnp.bfloat16 else x, t)
|
| 11 |
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
def main():
|
| 14 |
+
# Saving extra files from config.json and tokenizer.json files
|
| 15 |
+
tokenizer = AutoTokenizer.from_pretrained("./")
|
| 16 |
+
tokenizer.save_pretrained("./")
|
| 17 |
+
|
| 18 |
+
# Temporary saving bfloat16 Flax model into float32
|
| 19 |
+
tmp = tempfile.mkdtemp()
|
| 20 |
+
flax_model = FlaxRobertaForMaskedLM.from_pretrained("./")
|
| 21 |
+
flax_model.params = to_f32(flax_model.params)
|
| 22 |
+
flax_model.save_pretrained(tmp)
|
| 23 |
+
# Converting float32 Flax to PyTorch
|
| 24 |
+
model = RobertaForMaskedLM.from_pretrained(tmp, from_flax=True)
|
| 25 |
+
model.save_pretrained("./", save_config=False)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
if __name__ == "__main__":
|
| 29 |
+
main()
|