Changed batch size
Browse files- run.sh +9 -3
- run_mlm_flax.py +4 -4
run.sh
CHANGED
|
@@ -6,10 +6,16 @@
|
|
| 6 |
--dataset_name="large_spanish_corpus" \
|
| 7 |
--dataset_config_name="combined" \
|
| 8 |
--max_seq_length="128" \
|
| 9 |
-
--
|
| 10 |
-
--
|
|
|
|
| 11 |
--learning_rate="3e-4" \
|
|
|
|
|
|
|
|
|
|
| 12 |
--warmup_steps="1000" \
|
| 13 |
--overwrite_output_dir \
|
| 14 |
--num_train_epochs="8" \
|
| 15 |
-
--
|
|
|
|
|
|
|
|
|
| 6 |
--dataset_name="large_spanish_corpus" \
|
| 7 |
--dataset_config_name="combined" \
|
| 8 |
--max_seq_length="128" \
|
| 9 |
+
--pad_to_max_length \
|
| 10 |
+
--per_device_train_batch_size="128" \
|
| 11 |
+
--per_device_eval_batch_size="128" \
|
| 12 |
--learning_rate="3e-4" \
|
| 13 |
+
--save_strategy="steps" \
|
| 14 |
+
--save_steps="10000" \
|
| 15 |
+
--save_total_limit="5" \
|
| 16 |
--warmup_steps="1000" \
|
| 17 |
--overwrite_output_dir \
|
| 18 |
--num_train_epochs="8" \
|
| 19 |
+
--dtype="bfloat16" \
|
| 20 |
+
--push_to_hub_model_id="flax-community/bertin-roberta-large-spanish" \
|
| 21 |
+
--push_to_hub 2>&1 | tee run.log
|
run_mlm_flax.py
CHANGED
|
@@ -315,10 +315,10 @@ if __name__ == "__main__":
|
|
| 315 |
|
| 316 |
# Log on each process the small summary:
|
| 317 |
logger = logging.getLogger(__name__)
|
| 318 |
-
logger.warning(
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
)
|
| 322 |
|
| 323 |
# Set the verbosity to info of the Transformers logger (on main process only):
|
| 324 |
logger.info(f"Training/evaluation parameters {training_args}")
|
|
|
|
| 315 |
|
| 316 |
# Log on each process the small summary:
|
| 317 |
logger = logging.getLogger(__name__)
|
| 318 |
+
#logger.warning(
|
| 319 |
+
# f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
| 320 |
+
# + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
| 321 |
+
#)
|
| 322 |
|
| 323 |
# Set the verbosity to info of the Transformers logger (on main process only):
|
| 324 |
logger.info(f"Training/evaluation parameters {training_args}")
|