|
|
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline |
|
|
|
|
|
device = 0 if torch.cuda.is_available() else -1 |
|
|
|
|
|
multi_model_list = [ |
|
{"model_id": "BAAI/bge-base-en-v1.5", "task":"feature-extraction"}, |
|
{"model_id": "BAAI/bge-reranker-base", "task":"text-classification"}, |
|
] |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.multi_model={} |
|
|
|
for model in multi_model_list: |
|
self.multi_model[model["model_id"]] = pipeline(model["task"], model=model["model_id"], device=device) |
|
|
|
def __call__(self, data): |
|
|
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
model_id = data.pop("model_id", None) |
|
|
|
|
|
if model_id is None or model_id not in self.multi_model: |
|
raise ValueError(f"model_id: {model_id} is not valid. Available models are: {list(self.multi_model.keys())}") |
|
|
|
|
|
if parameters is not None: |
|
prediction = self.multi_model[model_id](inputs, **parameters) |
|
else: |
|
prediction = self.multi_model[model_id](inputs) |
|
|
|
return prediction |