File size: 5,275 Bytes
eda968a
 
 
 
 
 
 
c8f1870
 
 
 
5104702
eda968a
 
5a3f95b
eda968a
6e02a72
 
 
 
 
 
 
eda968a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690f062
eda968a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690f062
 
eda968a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95fdb64
d5a9b36
 
 
 
 
 
 
 
95fdb64
eda968a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a3f95b
4eddaaa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
datasets:
- klue
language:
- ko
license: cc-by-4.0
---

# bespin-global/klue-sroberta-base-continue-learning-by-mnr

ํ•ด๋‹น ๋ชจ๋ธ์€ KLUE/NLI, KLUE/STS ๋ฐ์ดํ„ฐ์…‹์„ ํ™œ์šฉํ•˜์˜€์œผ๋ฉฐ, sentence-transformers์˜ ๊ณต์‹ ๋ฌธ์„œ ๋‚ด ์†Œ๊ฐœ๋œ [continue-learning](https://github.com/UKPLab/sentence-transformers/blob/master/examples/training/sts/training_stsbenchmark_continue_training.py) ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์•„๋ž˜์™€ ๊ฐ™์ด ํ•™์Šต๋˜์—ˆ์Šต๋‹ˆ๋‹ค.
1. NLI ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด nagative sampling ํ›„, MultipleNegativeRankingLoss๋ฅผ ํ™œ์šฉํ•˜์—ฌ 1์ฐจ NLI training ์ˆ˜ํ–‰
2. 1์—์„œ ํ•™์Šต์™„๋ฃŒ ๋œ ๋ชจ๋ธ์— STS ๋ฐ์ดํ„ฐ์…‹์„ ํ†ตํ•ด, CosineSimilarityLoss๋ฅผ ํ™œ์šฉํ•˜์—ฌ 2์ฐจ STS training ์ˆ˜ํ–‰

ํ•™์Šต์— ๊ด€ํ•œ ์ž์„ธํ•œ ๋‚ด์šฉ์€ [Blog](https://velog.io/@jaehyeong/Basic-NLP-sentence-transformers-%EB%9D%BC%EC%9D%B4%EB%B8%8C%EB%9F%AC%EB%A6%AC%EB%A5%BC-%ED%99%9C%EC%9A%A9%ED%95%9C-SBERT-%ED%95%99%EC%8A%B5-%EB%B0%A9%EB%B2%95#225-continue-learning-by-sts)์™€ [Colab ์‹ค์Šต ์ฝ”๋“œ](https://colab.research.google.com/drive/1uDt3o_Nv2cTiVbIAIUkst_eOSD37Wkmf)๋ฅผ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”.

---
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

<!--- Describe your model here -->

## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
embeddings = model.encode(sentences)
print(embeddings)
```



## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr")
model = AutoModel.from_pretrained("bespin-global/klue-sroberta-base-continue-learning-by-mnr")

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)
```



## Evaluation Results

<!--- Describe how your model was evaluated -->

**EmbeddingSimilarityEvaluator: Evaluating the model on sts-test dataset:**
- Cosine-Similarity :
	- Pearson: 0.8901	Spearman: 0.8893
- Manhattan-Distance:
	- Pearson: 0.8867	Spearman: 0.8818
- Euclidean-Distance:
	- Pearson: 0.8875	Spearman: 0.8827
- Dot-Product-Similarity:
	- Pearson: 0.8786	Spearman: 0.8735
- Average : 0.8892573547643868


## Training
The model was trained with the parameters:

**DataLoader**:

`torch.utils.data.dataloader.DataLoader` of length 329 with parameters:
```
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
```

**Loss**:

`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss` 

Parameters of the fit()-Method:
```
{
    "epochs": 4,
    "evaluation_steps": 32,
    "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 132,
    "weight_decay": 0.01
}
```


## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
```

## Citing & Authors

<!--- Describe where people can find more information -->
[JaeHyeong AN](https://huggingface.co/Copycats) at [Bespin Global](https://www.bespinglobal.com/)