hidream-controlnet-lora-test
This is a ControlNet PEFT LoRA derived from HiDream-ai/HiDream-I1-Full.
The main validation prompt used during training was:
A photo-realistic image of a cat
Validation settings
- CFG:
4.0
- CFG Rescale:
0.0
- Steps:
16
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
256x256
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:

- Prompt
- A photo-realistic image of a cat
- Negative Prompt
- ugly, cropped, blurry, low-quality, mediocre average
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 0
Training steps: 2
Learning rate: 0.0001
- Learning rate schedule: constant
- Warmup steps: 500
Max grad value: 2.0
Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
Gradient checkpointing: True
Prediction type: flow_matching (extra parameters=['shift=3.0'])
Optimizer: adamw_bf16
Trainable parameter precision: Pure BF16
Base model precision:
int8-quanto
Caption dropout probability: 0.0%
LoRA Rank: 1
LoRA Alpha: 1.0
LoRA Dropout: 0.1
LoRA initialisation style: default
Datasets
antelope-data-256
- Repeats: 0
- Total number of images: 29
- Total number of aspect buckets: 1
- Resolution: 0.065536 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'HiDream-ai/HiDream-I1-Full'
adapter_id = 'bghira/hidream-controlnet-lora-test'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "A photo-realistic image of a cat"
negative_prompt = 'ugly, cropped, blurry, low-quality, mediocre average'
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=16,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=256,
height=256,
guidance_scale=4.0,
).images[0]
model_output.save("output.png", format="PNG")
- Downloads last month
- 380
Model tree for bghira/hidream-controlnet-lora-test
Base model
HiDream-ai/HiDream-I1-Full