sd35m-reflow
This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-3.5-medium.
The main validation prompt used during training was:
A photo-realistic image of a cat
Validation settings
- CFG:
1.0
- CFG Rescale:
0.0
- Steps:
8
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
1024x1024
- Skip-layer guidance: skip_guidance_layers=[],
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:

- Prompt
- unconditional (blank prompt)
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- A photo-realistic image of a cat
- Negative Prompt
- blurry, cropped, ugly
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 1
Training steps: 500
Learning rate: 0.0001
- Learning rate schedule: constant_with_warmup
- Warmup steps: 500
Max grad value: 0.1
Effective batch size: 32
- Micro-batch size: 4
- Gradient accumulation steps: 1
- Number of GPUs: 8
Gradient checkpointing: True
Prediction type: flow_matching (extra parameters=['flow_schedule_auto_shift', 'shift=0.0'])
Optimizer: adamw_bf16
Trainable parameter precision: Pure BF16
Base model precision:
no_change
Caption dropout probability: 10.0%
LoRA Rank: 16
LoRA Alpha: None
LoRA Dropout: 0.1
LoRA initialisation style: default
Datasets
photo10k
- Repeats: 0
- Total number of images: ~10040
- Total number of aspect buckets: 2
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'stabilityai/stable-diffusion-3.5-medium'
adapter_id = 'bghira/sd35m-reflow'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "A photo-realistic image of a cat"
negative_prompt = 'blurry, cropped, ugly'
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=8,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=1.0,
skip_guidance_layers=[],
).images[0]
model_output.save("output.png", format="PNG")
- Downloads last month
- 44
Model tree for bghira/sd35m-reflow
Base model
stabilityai/stable-diffusion-3.5-medium