--- license: other base_model: "Lightricks/LTX-Video" tags: - ltx-video - ltx-video-diffusers - text-to-video - image-to-video - diffusers - simpletuner - not-for-all-audiences - lora - template:sd-lora - video-to-video - lycoris pipeline_tag: text-to-video inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.gif - text: 'A photo-realistic image of a cat sitting in a field of lavender flowers. The cat is looking at the viewer.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_0.gif --- # simpletuner This is a LyCORIS adapter derived from [Lightricks/LTX-Video](https://huggingface.co/Lightricks/LTX-Video). The main validation prompt used during training was: ``` A photo-realistic image of a cat sitting in a field of lavender flowers. The cat is looking at the viewer. ``` ## Validation settings - CFG: `4.2` - CFG Rescale: `0.0` - Steps: `5` - Sampler: `FlowMatchEulerDiscreteScheduler` - Seed: `42` - Resolution: `384x256` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 0 - Training steps: 60 - Learning rate: 8e-05 - Learning rate schedule: constant - Warmup steps: 0 - Max grad value: 2.0 - Effective batch size: 4 - Micro-batch size: 4 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Gradient checkpointing: True - Prediction type: flow-matching (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing']) - Optimizer: optimi-lion - Trainable parameter precision: Pure BF16 - Base model precision: `no_change` - Caption dropout probability: 10.0% ### LyCORIS Config: ```json { "algo": "lokr", "multiplier": 1.0, "linear_dim": 10000, "bypass_mode": true, "linear_alpha": 1, "factor": 16, "apply_preset": { "target_module": [ "Attention", "FeedForward" ], "module_algo_map": { "Attention": { "factor": 16 }, "FeedForward": { "factor": 8 } } } } ``` ## Datasets ### image-dataset-384 - Repeats: 4 - Total number of images: 11 - Total number of aspect buckets: 2 - Resolution: 0.147456 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ### video-dataset-384 - Repeats: 4 - Total number of images: 7 - Total number of aspect buckets: 1 - Resolution: 0.147456 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline from lycoris import create_lycoris_from_weights def download_adapter(repo_id: str): import os from huggingface_hub import hf_hub_download adapter_filename = "pytorch_lora_weights.safetensors" cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models')) cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_") path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path) path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename) os.makedirs(path_to_adapter, exist_ok=True) hf_hub_download( repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter ) return path_to_adapter_file model_id = 'Lightricks/LTX-Video' adapter_repo_id = 'bghira/simpletuner' adapter_filename = 'pytorch_lora_weights.safetensors' adapter_file_path = download_adapter(repo_id=adapter_repo_id) pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 lora_scale = 1.0 wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer) wrapper.merge_to() prompt = "A photo-realistic image of a cat sitting in a field of lavender flowers. The cat is looking at the viewer." negative_prompt = 'blurry, cropped, ugly' ## Optional: quantise the model to save on vram. ## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time. #from optimum.quanto import quantize, freeze, qint8 #quantize(pipeline.transformer, weights=qint8) #freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level model_output = pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=5, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=384, height=256, guidance_scale=4.2, ).frames[0] from diffusers.utils.export_utils import export_to_gif export_to_gif(model_output, "output.gif", fps=25) ```