You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

simpletuner

This is a PEFT SingLoRA derived from stabilityai/stable-diffusion-xl-base-1.0.

The main validation prompt used during training was:

A photo-realistic image of a River Phoenix sitting in a field of lavender flowers. The River Phoenix is looking at the viewer.

Validation settings

  • CFG: 4.2
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: ddim
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 0

  • Training steps: 1

  • Learning rate: 0.0001

    • Learning rate schedule: constant
    • Warmup steps: 0
  • Max grad value: 2.0

  • Effective batch size: 4

    • Micro-batch size: 4
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Gradient checkpointing: True

  • Prediction type: epsilon (extra parameters=['training_scheduler_timestep_spacing=trailing', 'inference_scheduler_timestep_spacing=trailing'])

  • Optimizer: optimi-stableadamw

  • Trainable parameter precision: Pure BF16

  • Base model precision: int8-quanto

  • Caption dropout probability: 0.1%

  • LoRA Rank: 16

  • LoRA Alpha: None

  • LoRA Dropout: 0.1

  • LoRA initialisation style: default

  • LoRA mode: SingLoRA

Datasets

subject-1024

  • Repeats: 4
  • Total number of images: 29
  • Total number of aspect buckets: 9
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

subject-512

  • Repeats: 4
  • Total number of images: 29
  • Total number of aspect buckets: 8
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline

from peft_singlora import setup_singlora
setup_singlora() # overwrites the nn.Linear mapping in PEFT.
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
adapter_id = 'bghira/simpletuner'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)

prompt = "A photo-realistic image of a River Phoenix sitting in a field of lavender flowers. The River Phoenix is looking at the viewer."
negative_prompt = 'blurry, cropped, ugly'

## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.unet, weights=qint8)
freeze(pipeline.unet)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1024,
    height=1024,
    guidance_scale=4.2,
    guidance_rescale=0.0,
).images[0]

model_output.save("output.png", format="PNG")
Downloads last month
35
Inference Providers NEW
Examples

Model tree for bghira/simpletuner

Adapter
(7335)
this model

Spaces using bghira/simpletuner 3