--- tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: bertweet-base-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion args: default metrics: - name: Accuracy type: accuracy value: 0.929 - name: F1 type: f1 value: 0.9295613935787139 - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - name: Accuracy type: accuracy value: 0.925 verified: true - name: Precision Macro type: precision value: 0.8722017563353339 verified: true - name: Precision Micro type: precision value: 0.925 verified: true - name: Precision Weighted type: precision value: 0.9283646705517916 verified: true - name: Recall Macro type: recall value: 0.8982480793145559 verified: true - name: Recall Micro type: recall value: 0.925 verified: true - name: Recall Weighted type: recall value: 0.925 verified: true - name: F1 Macro type: f1 value: 0.883488774573809 verified: true - name: F1 Micro type: f1 value: 0.925 verified: true - name: F1 Weighted type: f1 value: 0.9259820821054494 verified: true - name: loss type: loss value: 0.18158096075057983 verified: true --- # bertweet-base-finetuned-emotion This model is a fine-tuned version of [vinai/bertweet-base](https://huggingface.co/vinai/bertweet-base) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1737 - Accuracy: 0.929 - F1: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9469 | 1.0 | 250 | 0.3643 | 0.895 | 0.8921 | | 0.2807 | 2.0 | 500 | 0.2173 | 0.9245 | 0.9252 | | 0.1749 | 3.0 | 750 | 0.1859 | 0.926 | 0.9266 | | 0.1355 | 4.0 | 1000 | 0.1737 | 0.929 | 0.9296 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3