Upload README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<div align="center">
|
| 2 |
+
<img src="https://huggingface.co/bharatgenai/Param-1-2.9B-Instruct/resolve/main/BharatGen%20Logo%20(1).png" width="60%" alt="BharatGen" />
|
| 3 |
+
</div>
|
| 4 |
+
<hr>
|
| 5 |
+
<div align="center">
|
| 6 |
+
<a href="#" style="margin: 4px; pointer-events: none; cursor: default;">
|
| 7 |
+
<img alt="Paper" src="https://img.shields.io/badge/Paper-Coming%20Soon-lightgrey?style=flat" />
|
| 8 |
+
</a>
|
| 9 |
+
<a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" style="margin: 4px;">
|
| 10 |
+
<img alt="License" src="https://img.shields.io/badge/License-CC--BY--4.0-blue.svg" />
|
| 11 |
+
</a>
|
| 12 |
+
<a href="#" target="_blank" style="margin: 4px;">
|
| 13 |
+
<img alt="Blog" src="https://img.shields.io/badge/Blog-Read%20More-brightgreen?style=flat" />
|
| 14 |
+
</a>
|
| 15 |
+
</div>
|
| 16 |
+
|
| 17 |
+
# AyurParam
|
| 18 |
+
BharatGen introduces AyurParam, a domain-specialized large language model fine-tuned from Param-1-2.9B-Instruct on a high-quality Ayurveda dataset. It is designed to handle Ayurvedic queries, classical text interpretation, clinical guidance, and wellness knowledge. Ayurveda offers vast traditional medical wisdom, yet most language models lack domain-specific understanding. AyurParam bridges this gap by combining Param-1’s bilingual strengths with a curated Ayurvedic knowledge base, enabling contextually rich and culturally grounded responses.
|
| 19 |
+
|
| 20 |
+
## 🏗 Model Architecture
|
| 21 |
+
AyurParam inherits the architecture of Param-1-2.9B-Instruct:
|
| 22 |
+
* Hidden size: 204
|
| 23 |
+
* Intermediate size: 7168
|
| 24 |
+
* Attention heads: 16
|
| 25 |
+
* Hidden layers: 32
|
| 26 |
+
* Key-value heads: 8
|
| 27 |
+
* Max position embeddings: 2048
|
| 28 |
+
* Activation: SiLU
|
| 29 |
+
* Positional Embeddings: Rotary (RoPE, theta=10000)
|
| 30 |
+
* Attention Mechanism: Grouped-query attention
|
| 31 |
+
* Precision: bf16-mixed
|
| 32 |
+
* Base model: Param-1-2.9B-Instruct
|
| 33 |
+
|
| 34 |
+
## 📚 Data Preparation
|
| 35 |
+
AyurParam’s training corpus was carefully crafted to ensure deep Ayurvedic knowledge, Sanskrit/English bilingual accessibility, and clinical relevance.
|
| 36 |
+
Steps involved:
|
| 37 |
+
1. Source Gathering
|
| 38 |
+
* 15k+ passages from classical Ayurvedic texts (digitized and curated).
|
| 39 |
+
* 10k+ passages from AYUSH ministry guidelines, research papers, and clinical case discussions.
|
| 40 |
+
2. Question Generation
|
| 41 |
+
* 5 curated Q&A pairs generated per passage using an open-source LLM + domain expert review.
|
| 42 |
+
3. Domain Taxonomy & Personas
|
| 43 |
+
* Built an Ayurveda-specific taxonomy (Dosha, Dhatu, Mala, Srotas, Nidana, Chikitsa, etc.).
|
| 44 |
+
* Defined multiple personas: student, vaidya (physician), researcher, policymaker, wellness coach.
|
| 45 |
+
4. Dataset Construction
|
| 46 |
+
* 1.5M Q&A pairs grounded in taxonomy and personas.
|
| 47 |
+
* 4M multi-turn conversation samples created.
|
| 48 |
+
* Sanskrit terminology preserved with transliteration and explanations.
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
## 🏋️ Training Setup
|
| 52 |
+
* Base model: Param-1-2.9B-Instruct
|
| 53 |
+
* Training framework: Hugging Face + TRL (SFT) + torchrun multi-node setup
|
| 54 |
+
* Prompt template: Custom-designed for Ayurvedic inference
|
| 55 |
+
* Scheduler: Linear with warmup
|
| 56 |
+
* Epochs: 3
|
| 57 |
+
* Total training samples: ~8M
|
| 58 |
+
* Test samples: ~800k
|
| 59 |
+
* Base learning rate: 5e-6
|
| 60 |
+
* Minimum learning rate: 0
|
| 61 |
+
* Additional tokens: <user>, <assistant>, <context>, <system_prompt>
|
| 62 |
+
* Vocab size: 256k + 4
|
| 63 |
+
* Global batch size: 1024
|
| 64 |
+
* Micro batch size: 4
|
| 65 |
+
* Gradient accumulation steps: 32
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
## 🚀 Inference Example
|
| 69 |
+
```python
|
| 70 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 71 |
+
import torch
|
| 72 |
+
|
| 73 |
+
model_name = "bharatgenai/AyurParam"
|
| 74 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=False)
|
| 75 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 76 |
+
model_name,
|
| 77 |
+
trust_remote_code=True,
|
| 78 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.bfloat32,
|
| 79 |
+
device_map="auto"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
# Example Ayurvedic query
|
| 83 |
+
user_input = "What is the Samprapti (pathogenesis) of Amavata according to Ayurveda?"
|
| 84 |
+
|
| 85 |
+
# Prompt styles
|
| 86 |
+
# 1. Generic QA: <user> ... <assistant>
|
| 87 |
+
# 2. Context-based QA: <context> ... <user> ... <assistant>
|
| 88 |
+
# 3. Multi-turn conversation (supports up to 5 turns): <user> ... <assistant> ... <user> ... <assistant>
|
| 89 |
+
|
| 90 |
+
prompt = f"<user> {user_input} <assistant>"
|
| 91 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 92 |
+
|
| 93 |
+
with torch.no_grad():
|
| 94 |
+
output = model.generate(
|
| 95 |
+
**inputs,
|
| 96 |
+
max_new_tokens=300,
|
| 97 |
+
do_sample=True,
|
| 98 |
+
top_k=50,
|
| 99 |
+
top_p=0.95,
|
| 100 |
+
temperature=0.6,
|
| 101 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 102 |
+
use_cache=False
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
## 📊 Benchmark Results: Ayur Param vs Baselines
|
| 110 |
+
- [BhashaBench-Ayur benchmark]([https://github.com/BharatGen-IITB-TIH/BhashaBench](https://huggingface.co/datasets/bharatgenai/BhashaBench-Ayur))
|
| 111 |
+
---
|
| 112 |
+
|
| 113 |
+
## 1. Overall Performance
|
| 114 |
+
|
| 115 |
+
### Similar Range Models
|
| 116 |
+
| Model | bba | bba_English | bba_Hindi |
|
| 117 |
+
|-----------------------|-------|-------------|-----------|
|
| 118 |
+
| Llama-3.2-1B-Instruct | 26.41 | 26.77 | 25.82 |
|
| 119 |
+
| Qwen2.5-3B-Instruct | 32.68 | 35.22 | 28.46 |
|
| 120 |
+
| granite-3.1-2b | 31.10 | 33.39 | 27.30 |
|
| 121 |
+
| Llama-3.2-3B-Instruct | 33.20 | 35.31 | 29.67 |
|
| 122 |
+
| gemma-2-2b-it | 28.40 | 29.38 | 26.79 |
|
| 123 |
+
| **AyurParam** | **39.97** | **41.12** | **38.04** |
|
| 124 |
+
|
| 125 |
+
### Larger Models
|
| 126 |
+
| Model | bba | bba_English | bba_Hindi |
|
| 127 |
+
|-----------------------------------------|-------|-------------|-----------|
|
| 128 |
+
| Indic-gemma-7B-Navarasa-2.0 | 35.13 | 37.12 | 31.83 |
|
| 129 |
+
| Pangea-7B | 37.41 | 40.69 | 31.93 |
|
| 130 |
+
| aya-23-8B | 31.97 | 33.84 | 28.87 |
|
| 131 |
+
| gpt-oss-20b | 36.34 | 38.30 | 33.09 |
|
| 132 |
+
| Llama-3.1-8B-Instruct | 34.76 | 36.86 | 31.26 |
|
| 133 |
+
| gemma-2-27b-it | 37.99 | 40.45 | 33.89 |
|
| 134 |
+
| Nemotron-4-Mini-Hindi-4B-Instruct | 33.54 | 33.38 | 33.82 |
|
| 135 |
+
| **AyurParam** | **39.97** | **41.12** | **38.04** |
|
| 136 |
+
|
| 137 |
+
---
|
| 138 |
+
|
| 139 |
+
## 2. Question Difficulty
|
| 140 |
+
|
| 141 |
+
### Similar Range Models
|
| 142 |
+
| Difficulty | Llama-3.2-1B | Qwen2.5-3B | granite-3.1-2b | Llama-3.2-3B | gemma-2-2b-it | **AyurParam** |
|
| 143 |
+
|------------|--------------|------------|----------------|--------------|---------------|----------------|
|
| 144 |
+
| **Easy** | 27.44 | 35.55 | 33.90 | 36.42 | 29.96 | **43.93** |
|
| 145 |
+
| **Medium** | 25.23 | 29.57 | 28.06 | 29.66 | 26.83 | **35.95** |
|
| 146 |
+
| **Hard** | 25.39 | 28.23 | 26.81 | 28.51 | 24.96 | **31.21** |
|
| 147 |
+
|
| 148 |
+
### Larger Models
|
| 149 |
+
| Difficulty | Indic-gemma-7B | Pangea-7B | aya-23-8B | gpt-oss-20b | Llama-3.1-8B | gemma-2-27b-it | Nemotron-4-Mini-Hindi-4B | **AyurParam** |
|
| 150 |
+
|------------|----------------|-----------|-----------|-------------|--------------|----------------|--------------------------|----------------|
|
| 151 |
+
| **Easy** | 38.54 | 41.45 | 35.51 | 42.03 | 39.43 | 43.47 | 36.08 |**43.93** |
|
| 152 |
+
| **Medium** | 31.72 | 32.94 | 28.29 | 30.27 | 29.36 | 31.90 | 30.80 |**35.95** |
|
| 153 |
+
| **Hard** | 27.23 | 31.77 | 25.11 | 26.67 | 30.50 | 30.78 | 29.50 |**31.21** |
|
| 154 |
+
|
| 155 |
+
---
|
| 156 |
+
|
| 157 |
+
## 3. Question Type
|
| 158 |
+
|
| 159 |
+
### Similar Range Models
|
| 160 |
+
| Type | Llama-3.2-1B | Qwen2.5-3B | granite-3.1-2b | Llama-3.2-3B | gemma-2-2b-it | **AyurParam** |
|
| 161 |
+
|----------------------|--------------|------------|----------------|--------------|---------------|----------------|
|
| 162 |
+
| Assertion/Reasoning | 59.26 | 51.85 | 33.33 | 40.74 | 33.33 | **44.44** |
|
| 163 |
+
| Fill in the blanks | 26.97 | 29.21 | 21.35 | 34.83 | 32.02 | **29.78** |
|
| 164 |
+
| MCQ | 26.34 | 32.70 | 31.22 | 33.17 | 28.33 | **40.12** |
|
| 165 |
+
| Match the column | 26.83 | 29.27 | 29.27 | 29.27 | 36.59 | **24.39** |
|
| 166 |
+
|
| 167 |
+
### Larger Models
|
| 168 |
+
| Type | Indic-gemma-7B | Pangea-7B | aya-23-8B | gpt-oss-20b | Llama-3.1-8B | gemma-2-27b-it | Nemotron-4-Mini-Hindi-4B | **AyurParam** |
|
| 169 |
+
|----------------------|----------------|-----------|-----------|-------------|--------------|----------------|--------------------------|----------------|
|
| 170 |
+
| Assertion/Reasoning | 59.26 | 62.96 | 18.52 | 25.93 | 29.63 | 55.56 | 37.04 | **44.44** |
|
| 171 |
+
| Fill in the blanks | 35.39 | 24.16 | 30.90 | 32.02 | 26.97 | 35.96 | 30.34 | **29.78** |
|
| 172 |
+
| MCQ | 35.10 | 37.53 | 32.05 | 36.39 | 34.83 | 37.98 | 33.60 | **40.12** |
|
| 173 |
+
| Match the column | 31.71 | 34.15 | 17.07 | 46.34 | 46.34 | 39.02 | 24.39 | **24.39** |
|
| 174 |
+
|
| 175 |
+
---
|
| 176 |
+
From the above results, **Ayur Param not only outperforms all similar-sized models** but also achieves **competitive or better performance than larger models** across multiple metrics.
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
## License
|
| 180 |
+
This dataset is released under the [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/).
|
| 181 |
+
|
| 182 |
+
## Contact
|
| 183 |
+
For any questions or feedback, please contact:
|
| 184 |
+
- Sravan Kumar ([email protected])
|
| 185 |
+
- Kundeshwar Pundalik ([email protected])
|