JustinLin610 commited on
Commit
0021dcd
·
0 Parent(s):
.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tongyi Qianwen LICENSE AGREEMENT
2
+
3
+ Tongyi Qianwen Release Date: August 3, 2023
4
+
5
+ By clicking to agree or by using or distributing any portion or element of the Tongyi Qianwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
6
+
7
+ 1. Definitions
8
+ a. This Tongyi Qianwen LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
9
+ b. "We"(or "Us") shall mean Alibaba Cloud.
10
+ c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
11
+ d. "Third Parties" shall mean individuals or legal entities that are not under common control with Us or You.
12
+ e. "Tongyi Qianwen" shall mean the large language models (including Qwen-7B model and Qwen-7B-Chat model), and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Us.
13
+ f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Tongyi Qianwen and Documentation (and any portion thereof) made available under this Agreement.
14
+ g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
15
+ h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation,
16
+ and conversions to other media types.
17
+
18
+ 2. Grant of Rights
19
+ You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by Us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials.
20
+
21
+ 3. Redistribution
22
+ You may reproduce and distribute copies of the Materials or derivative works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
23
+ a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
24
+ b. You shall cause any modified files to carry prominent notices stating that You changed the files;
25
+ c. You shall retain in all copies of the Materials that You distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "Tongyi Qianwen is licensed under the Tongyi Qianwen LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
26
+ d. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such derivative works as a whole, provided Your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
27
+
28
+ 4. Restrictions
29
+ If you are commercially using the Materials, and your product or service has more than 100 million monthly active users, You shall request a license from Us. You cannot exercise your rights under this Agreement without our express authorization.
30
+
31
+ 5. Rules of use
32
+ a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
33
+ b. You can not use the Materials or any output therefrom to improve any other large language model (excluding Tongyi Qianwen or derivative works thereof).
34
+
35
+ 6. Intellectual Property
36
+ a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for Us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
37
+ b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of Us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
38
+ c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against Us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licences granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
39
+
40
+ 7. Disclaimer of Warranty and Limitation of Liability
41
+
42
+ a. We are not obligated to support, update, provide training for, or develop any further version of the Tongyi Qianwen Materials or to grant any license thereto.
43
+ b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
44
+ c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
45
+ d. You will defend, indemnify and hold harmless Us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
46
+
47
+ 8. Survival and Termination.
48
+ a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
49
+ b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 7 and 9 shall survive the termination of this Agreement.
50
+
51
+ 9. Governing Law and Jurisdiction.
52
+ a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
53
+ b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
NOTICE ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ------------- LICENSE FOR NVIDIA Megatron-LM code --------------
2
+
3
+ Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
4
+
5
+ Redistribution and use in source and binary forms, with or without
6
+ modification, are permitted provided that the following conditions
7
+ are met:
8
+ * Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+ * Redistributions in binary form must reproduce the above copyright
11
+ notice, this list of conditions and the following disclaimer in the
12
+ documentation and/or other materials provided with the distribution.
13
+ * Neither the name of NVIDIA CORPORATION nor the names of its
14
+ contributors may be used to endorse or promote products derived
15
+ from this software without specific prior written permission.
16
+
17
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
18
+ EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20
+ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
21
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
25
+ OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
+
29
+
30
+ ------------- LICENSE FOR OpenAI tiktoken code --------------
31
+
32
+ MIT License
33
+
34
+ Copyright (c) 2022 OpenAI, Shantanu Jain
35
+
36
+ Permission is hereby granted, free of charge, to any person obtaining a copy
37
+ of this software and associated documentation files (the "Software"), to deal
38
+ in the Software without restriction, including without limitation the rights
39
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
40
+ copies of the Software, and to permit persons to whom the Software is
41
+ furnished to do so, subject to the following conditions:
42
+
43
+ The above copyright notice and this permission notice shall be included in all
44
+ copies or substantial portions of the Software.
45
+
46
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
47
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
48
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
49
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
50
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
51
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
52
+ SOFTWARE.
README.md ADDED
@@ -0,0 +1,364 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ - en
5
+ tags:
6
+ - qwen
7
+ pipeline_tag: text-generation
8
+ inference: false
9
+ ---
10
+
11
+ # Qwen-7B
12
+
13
+ <p align="center">
14
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo.jpg" width="400"/>
15
+ <p>
16
+ <br>
17
+
18
+ <p align="center">
19
+ Qwen-7B <a href="https://modelscope.cn/models/qwen/Qwen-7B/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-7B">🤗</a>&nbsp | Qwen-7B-Chat <a href="https://modelscope.cn/models/qwen/Qwen-7B-Chat/summary">🤖 <a> | <a href="https://huggingface.co/Qwen/Qwen-7B-Chat">🤗</a>&nbsp | Qwen-7B-Chat-Int4 <a href="https://huggingface.co/Qwen/Qwen-7B-Chat-Int4">🤗</a>
20
+ <br>
21
+ <a href="https://github.com/QwenLM/Qwen-7B/blob/main/assets/wechat.png">WeChat</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/z3GAxXZ9Ce">Discord</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://modelscope.cn/studios/qwen/Qwen-7B-Chat-Demo/summary">Demo</a>&nbsp | &nbsp<a href="https://github.com/QwenLM/Qwen-7B/blob/main/tech_memo.md">Report</a>
22
+ </p>
23
+ <br>
24
+
25
+ ## 介绍 (Introduction)
26
+
27
+ **通义千问-7B(Qwen-7B)**是阿里云研发的通义千问大模型系列的70亿参数规模的模型。Qwen-7B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-7B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-7B-Chat。本仓库为Qwen-7B的仓库。
28
+
29
+ 通义千问-7B(Qwen-7B)主要有以下特点:
30
+
31
+ 1. **大规模高质量训练语料**:使用超过2.2万亿tokens的数据进行预训练,包含高质量中、英、多语言、代码、数学等数据,涵盖通用及专业领域的训练语料。通过大量对比实验对预训练语料分布进行了优化。
32
+ 2. **强大的性能**:Qwen-7B在多个中英文下游评测任务上(涵盖常识推理、代码、数学、翻译等),效果显著超越现有的相近规模开源模型,甚至在部分指标上相比更大尺寸模型也有较强竞争力。具体评测结果请详见下文。
33
+ 3. **覆盖更全面的词表**:相比目前以中英词表为主的开源模型,Qwen-7B使用了约15万大小的词表。该词表对多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强和扩展。
34
+
35
+ 如果您想了解更多关于通义千问7B开源模型的细节,我们建议您参阅[Github代码库](https://github.com/QwenLM/Qwen-7B)。
36
+
37
+ **Qwen-7B** is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. This repository is the one for Qwen-7B.
38
+
39
+ The features of Qwen-7B include:
40
+
41
+ 1. **Large-scale high-quality training corpora**: It is pretrained on over 2.2 trillion tokens, including Chinese, English, multilingual texts, code, and mathematics, covering general and professional fields. The distribution of the pre-training corpus has been optimized through a large number of ablation experiments.
42
+ 2. **Competitive performance**: It significantly surpasses existing open-source models of similar scale on multiple Chinese and English downstream evaluation tasks (including commonsense, reasoning, code, mathematics, etc.), and even surpasses some larger-scale models in several benchmarks. See below for specific evaluation results.
43
+ 3. **More comprehensive vocabulary coverage**: Compared with other open-source models based on Chinese and English vocabularies, Qwen-7B uses a vocabulary of over 150K tokens. This vocabulary is more friendly to multiple languages, enabling users to directly further enhance the capability for certain languages without expanding the vocabulary.
44
+
45
+ For more details about the open-source model of Qwen-7B, please refer to the [Github](https://github.com/QwenLM/Qwen-7B) code repository.
46
+ <br>
47
+
48
+ ## 要求(Requirements)
49
+
50
+ * python 3.8及以上版本
51
+ * pytorch 1.12及以上版本,推荐2.0及以上版本
52
+ * 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑此选项)
53
+ * python 3.8 and above
54
+ * pytorch 1.12 and above, 2.0 and above are recommended
55
+ * CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
56
+ <br>
57
+
58
+ ## 依赖项 (Dependency)
59
+
60
+ 运行Qwen-7B,请确保满足上述要求,再执行以下pip命令安装依赖库
61
+
62
+ To run Qwen-7B, please make sure you meet the above requirements, and then execute the following pip commands to install the dependent libraries.
63
+
64
+ ```bash
65
+ pip install transformers==4.32.0 accelerate tiktoken einops scipy transformers_stream_generator==0.0.4 peft deepspeed
66
+ ```
67
+
68
+ 另外,推荐安装`flash-attention`库,以实现更高的效率和更低的显存占用。
69
+
70
+ In addition, it is recommended to install the `flash-attention` library for higher efficiency and lower memory usage.
71
+
72
+ ```bash
73
+ git clone -b v1.0.8 https://github.com/Dao-AILab/flash-attention
74
+ cd flash-attention && pip install .
75
+ # 下方安装可选,安装可能比较缓慢。
76
+ # Below are optional. Installing them might be slow.
77
+ # pip install csrc/layer_norm
78
+ # pip install csrc/rotary
79
+ ```
80
+ <br>
81
+
82
+ ## 快速使用(Quickstart)
83
+
84
+ 您可以通过以下代码轻松调用:
85
+
86
+ You can easily call the model with the following code:
87
+
88
+ ```python
89
+ from transformers import AutoModelForCausalLM, AutoTokenizer
90
+ from transformers.generation import GenerationConfig
91
+
92
+ # Note: The default behavior now has injection attack prevention off.
93
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True)
94
+
95
+ # use bf16
96
+ # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True, bf16=True).eval()
97
+ # use fp16
98
+ # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True, fp16=True).eval()
99
+ # use cpu only
100
+ # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="cpu", trust_remote_code=True).eval()
101
+ # use auto mode, automatically select precision based on the device.
102
+ model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B", device_map="auto", trust_remote_code=True).eval()
103
+
104
+ # Specify hyperparameters for generation
105
+ model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True)
106
+
107
+ inputs = tokenizer('蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是', return_tensors='pt')
108
+ inputs = inputs.to(model.device)
109
+ pred = model.generate(**inputs)
110
+ print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
111
+ # 蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是亚的斯亚贝巴(Addis Ababa)...
112
+ ```
113
+
114
+ 关于更多的使用说明,请参考我们的[Github repo](https://github.com/QwenLM/Qwen-7B)获取更多信息。
115
+
116
+ For more information, please refer to our [Github repo](https://github.com/QwenLM/Qwen-7B) for more information.
117
+ <br>
118
+
119
+ ## Tokenizer
120
+
121
+ > 注:作为术语的“tokenization”在中文中尚无共识的概念对应,本文档采用英文表达以利说明。
122
+
123
+ 基于tiktoken的分词器有别于其他分词器,比如sentencepiece分词器。尤其在微调阶段,需要特别注意特殊token的使用。关于tokenizer的更多信息,以及微调时涉及的相关使用,请参阅[文档](https://github.com/QwenLM/Qwen-7B/blob/main/tokenization_note_zh.md)。
124
+
125
+ Our tokenizer based on tiktoken is different from other tokenizers, e.g., sentencepiece tokenizer. You need to pay attention to special tokens, especially in finetuning. For more detailed information on the tokenizer and related use in fine-tuning, please refer to the [documentation](https://github.com/QwenLM/Qwen-7B/blob/main/tokenization_note.md).
126
+ <br>
127
+
128
+ ## 模型细节 (Model)
129
+
130
+ Qwen-7B模型规模基本情况如下所示:
131
+
132
+ The details of the model architecture of Qwen-7B are listed as follows:
133
+
134
+ | Hyperparameter | Value |
135
+ |:----------------|:-------|
136
+ | n_layers | 32 |
137
+ | n_heads | 32 |
138
+ | d_model | 4096 |
139
+ | vocab size | 151851 |
140
+ | sequence length | 2048 |
141
+
142
+ 在位置编码、FFN激活函数和normalization的实现方式上,我们也采用了目前最流行的做法,
143
+ 即RoPE相对位置编码、SwiGLU激活函数、RMSNorm(可选安装flash-attention加速)。
144
+
145
+ 在分词器方面,相比目前主流开源模型以中英词表为主,Qwen-7B使用了超过15万token大小的词表。 该词表在GPT-4使用的BPE词表`cl100k_base`基础上,对中文、多语言进行了优化,在对中、英、代码数据的高效编解码的基础上,对部分多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强。
146
+ 词表对数字按单个数字位切分。调用较为高效的[tiktoken分词库](https://github.com/openai/tiktoken)进行分词。
147
+
148
+ 我们从部分语种各随机抽取100万个文档语料,以对比不同模型的编码压缩率(以支持100语种的XLM-R为基准值1,越低越好),具体性能见图。
149
+
150
+ 可以看到Qwen-7B在保持中英代码高效解码的前提下,对部分使用人群较多的语种(泰语th、希伯来语he、阿拉伯语ar、韩语ko、越南语vi、日语ja、土耳其语tr、印尼语id、波兰语pl、俄语ru、荷兰语nl、葡萄牙语pt、意大利语it、德语de、西班牙语es、法语fr等)上也实现了较高的压缩率,使得模型在这些语种上也具备较强的可扩展性和较高的训练和推理效率。
151
+
152
+ 在预训练数据方面,Qwen-7B模型一方面利用了部分开源通用语料,
153
+ 另一方面也积累了海量全网语料以及高质量文本内容,去重及过滤后的语料超过2.2T tokens。
154
+ 囊括全网文本、百科、书籍、代码���数学及各个领域垂类。
155
+
156
+ <p align="center">
157
+ <img src="assets/tokenizer.png" style="width: 1200px"/>
158
+ <p>
159
+
160
+ For position encoding, FFN activation function, and normalization methods, we adopt the prevalent practices, i.e., RoPE relative position encoding, SwiGLU for activation function, and RMSNorm for normalization (optional installation of flash-attention for acceleration).
161
+
162
+ For tokenization, compared to the current mainstream open-source models based on Chinese and English vocabularies, Qwen-7B uses a vocabulary of over 150K tokens. It first considers efficient encoding of Chinese, English, and code data, and is also more friendly to multilingual languages, enabling users to directly enhance the capability of some languages without expanding the vocabulary. It segments numbers by single digit, and calls the [tiktoken](https://github.com/openai/tiktoken) tokenizer library for efficient tokenization.
163
+
164
+ We randomly selected 1 million document corpus of each language to test and compare the encoding compression rates of different models (with XLM-R, which supports 100 languages, as the base value 1). The specific performance is shown in the figure above.
165
+
166
+ As can be seen, while ensuring the efficient decoding of Chinese, English, and code, Qwen-7B also achieves a high compression rate for many other languages (such as th, he, ar, ko, vi, ja, tr, id, pl, ru, nl, pt, it, de, es, fr etc.), equipping the model with strong scalability as well as high training and inference efficiency in these languages.
167
+
168
+ For pre-training data, on the one hand, Qwen-7B uses part of the open-source generic corpus. On the other hand, it uses a massive amount of accumulated web corpus and high-quality text content. The scale of corpus reaches over 2.2T tokens after deduplication and filtration, encompassing web text, encyclopedias, books, code, mathematics, and various domain.
169
+ <br>
170
+
171
+ ## 评测效果(Evaluation)
172
+
173
+ ### 中文评测(Chinese Evaluation)
174
+
175
+ #### C-Eval
176
+
177
+ [C-Eval](https://arxiv.org/abs/2305.08322)是评测预训练模型中文常识能力的常用测评框架,覆盖人文、社科、理工、其他专业四个大方向共52个学科。
178
+ 我们按照标准做法,以开发集样本作为few-shot来源,评价Qwen-7B预训练模型的5-shot验证集与测试集准确率。
179
+
180
+ [C-Eval](https://arxiv.org/abs/2305.08322) is a common evaluation benchmark for testing the common sense capability of pre-trained models in Chinese. It covers 52 subjects in four major directions: humanities, social sciences, STEM, and other specialties. According to the standard practice, we use the development set samples as the source of few-shot, to evaluate the 5-shot validation set and test set accuracy of the Qwen-7B pre-trained model.
181
+
182
+ 在C-Eval验证集上,Qwen-7B模型和其他模型的准确率对比如下:
183
+
184
+ The accuracy comparison of Qwen-7B and the other models on the C-Eval validation set is shown as follows:
185
+
186
+ | Model | Avg. |
187
+ |:----------------|:--------:|
188
+ | Alpaca-7B | 28.9 |
189
+ | Vicuna-7B | 31.2 |
190
+ | ChatGLM-6B | 37.1 |
191
+ | Baichuan-7B | 42.7 |
192
+ | ChatGLM2-6B | 50.9 |
193
+ | InternLM-7B | 53.4 |
194
+ | ChatGPT | 53.5 |
195
+ | Claude-v1.3 | 55.5 |
196
+ | **Qwen-7B** | **60.8** |
197
+
198
+ 在C-Eval测试集上,Qwen-7B预训练模型与其他模型的效果对比如下表所示:
199
+
200
+ The performance comparison of Qwen-7B and other models on the C-Eval test set is shown in the following table:
201
+
202
+ | Model | Avg. | Avg. (Hard) | STEM | Social Sciences | Humanities | Others |
203
+ |:------------------------|:--------:|:-----------:|:------:|:---------------:|:----------:|:------:|
204
+ | ChatGLM-6B | 38.9 | 29.2 | 33.3 | 48.3 | 41.3 | 38.0 |
205
+ | Chinese-Alpaca-Plus-13B | 41.5 | 30.5 | 36.6 | 49.7 | 43.1 | 41.2 |
206
+ | Baichuan-7B | 42.8 | 31.5 | 38.2 | 52.0 | 46.2 | 39.3 |
207
+ | WestlakeLM-19B | 44.6 | 34.9 | 41.6 | 51.0 | 44.3 | 44.5 |
208
+ | AndesLM-13B | 46.0 | 29.7 | 38.1 | 61.0 | 51.0 | 41.9 |
209
+ | BatGPT-15B-sirius | 47.0 | 31.9 | 42.7 | 57.5 | 48.6 | 43.6 |
210
+ | ChatGLM2-6B | 51.7 | 37.1 | 48.6 | 60.5 | 51.3 | 49.8 |
211
+ | InternLM-7B | 52.8 | 37.1 | 48.0 | 67.4 | 55.4 | 45.8 |
212
+ | Baichuan-13B | 53.6 | 36.7 | 47.0 | 66.8 | 57.3 | 49.8 |
213
+ | Claude-v1.3 | 54.2 | 39.0 | 51.9 | 61.7 | 52.1 | 53.7 |
214
+ | ChatGPT | 54.4 | 41.4 | 52.9 | 61.8 | 50.9 | 53.6 |
215
+ | **Qwen-7B** | **59.6** | 41.0 | 52.8 | 74.1 | 63.1 | 55.2 |
216
+
217
+ 可以看到,Qwen-7B在同等规模现有模型中取得了最高的分数,甚至相比更大规模模型也具有较强竞争力。
218
+
219
+ As can be seen, Qwen-7B achieves the best performance out of all existing models with similar scale and even surpasses larger-scale models.
220
+
221
+ ### 英文评测(English Evaluation)
222
+
223
+ #### MMLU
224
+
225
+ [MMLU](https://arxiv.org/abs/2009.03300)是目前评测英文综合能力最权威的基准评测之一,同样覆盖了不同学科领域、不同难度层级的57个子任务。
226
+
227
+ Qwen-7B在MMLU 5-shot准确率表现如下表:
228
+
229
+ [MMLU](https://arxiv.org/abs/2009.03300) is currently one of the most recognized benchmarks for evaluating English comprehension abilities, covering 57 subtasks across different academic fields and difficulty levels. The MMLU 5-shot accuracy performance of Qwen-7B is shown in the following table:
230
+
231
+ | Model | Avg. | STEM | Social Sciences | Humanities | Others |
232
+ |:--------------|:--------:|:----:|:---------------:|:----------:|:------:|
233
+ | LLaMA-7B | 35.1 | 30.5 | 38.3 | 34.0 | 38.1 |
234
+ | Baichuan-7B | 42.3 | 35.6 | 48.9 | 38.4 | 48.1 |
235
+ | LLaMA2-7B | 45.3 | 36.4 | 51.2 | 42.9 | 52.2 |
236
+ | LLaMA-13B | 46.9 | 35.8 | 53.8 | 45.0 | 53.3 |
237
+ | ChatGLM2-6B | 47.9 | 41.2 | 54.4 | 43.7 | 54.5 |
238
+ | InternLM-7B | 51.0 | - | - | - | - |
239
+ | Baichuan-13B | 51.6 | 41.6 | 60.9 | 47.4 | 58.5 |
240
+ | LLaMA2-13B | 54.8 | 44.1 | 62.6 | 52.8 | 61.1 |
241
+ | ChatGLM2-12B | 56.2 | 48.2 | 65.1 | 52.6 | 60.9 |
242
+ | **Qwen-7B** | **56.7** | 47.6 | 65.9 | 51.5 | 64.7 |
243
+
244
+ 在英文方面,Qwen-7B的效果同样超过了目前国内外其他同类开源预训练模型,同样对比更大规模版本的模型也具有较强竞争力。
245
+
246
+ In terms of English, Qwen-7B also surpasses other similar open-source pre-trained models, and is competitive when compared to larger versions of other models.
247
+
248
+ ### 代码评测(Coding Evaluation)
249
+
250
+ 我们在[HumanEval](https://github.com/openai/human-eval)(0-shot)上对比预训练模型的代码能力,结果如下:
251
+
252
+ We compared the code capabilities of pre-trained models on [HumanEval](https://github.com/openai/human-eval), and the results are as follows:
253
+
254
+ | Model | Pass@1 |
255
+ |:--------------|:--------:|
256
+ | Baichuan-7B | 9.2 |
257
+ | ChatGLM2-6B | 9.2 |
258
+ | InternLM-7B | 10.4 |
259
+ | LLaMA-7B | 10.5 |
260
+ | LLaMA2-7B | 12.8 |
261
+ | Baichuan-13B | 12.8 |
262
+ | LLaMA-13B | 15.8 |
263
+ | MPT-7B | 18.3 |
264
+ | LLaMA2-13B | 18.3 |
265
+ | **Qwen-7B** | **24.4** |
266
+
267
+ ### 数学评测(Mathematics Evaluation)
268
+
269
+ 数学能力使用常用的[GSM8K](https://github.com/openai/grade-school-math)数据集(8-shot)评价:
270
+
271
+ We compared the math capabilities of pre-trained models on [GSM8K](https://github.com/openai/grade-school-math) (8-shot), and the results are as follows:
272
+
273
+ | Model | Acc. |
274
+ |:--------------|:--------:|
275
+ | MPT-7B | 6.8 |
276
+ | Falcon-7B | 6.8 |
277
+ | Baichuan-7B | 9.7 |
278
+ | LLaMA-7B | 11.0 |
279
+ | LLaMA2-7B | 14.6 |
280
+ | LLaMA-13B | 17.8 |
281
+ | Baichuan-13B | 26.6 |
282
+ | LLaMA2-13B | 28.7 |
283
+ | InternLM-7B | 31.2 |
284
+ | ChatGLM2-6B | 32.4 |
285
+ | ChatGLM2-12B | 40.9 |
286
+ | **Qwen-7B** | **51.6** |
287
+
288
+ ### 翻译评测(Translation Evaluation)
289
+
290
+ 我们使用[WMT22](https://www.statmt.org/wmt22/translation-task.html)中-英(zh-en)和英-中(en-zh)数据集(5-shot BLEU)评测:
291
+
292
+ We compared the translation capabilities of pre-trained models on [WMT22](https://www.statmt.org/wmt22/translation-task.html) zh-en and en-zh (5-shot BLEU), and the results are as follows:
293
+
294
+ | Model | Avg. | zh-en | en-zh |
295
+ |:------------|:--------:|:--------:|:--------:|
296
+ | InternLM-7B | 11.8 | 9.0 | 14.5 |
297
+ | LLaMA-7B | 12.7 | 16.7 | 8.7 |
298
+ | LLaMA-13B | 15.8 | 19.5 | 12.0 |
299
+ | LLaMA2-7B | 19.9 | 21.9 | 17.9 |
300
+ | Bloom-7B | 20.3 | 19.1 | 21.4 |
301
+ | LLaMA2-13B | 23.3 | 22.4 | 24.2 |
302
+ | PolyLM-13B | 23.6 | 20.2 | 27.0 |
303
+ | Baichuan-7B | 24.6 | 22.6 | 26.6 |
304
+ | **Qwen-7B** | **27.5** | **24.3** | **30.6** |
305
+
306
+ ### 长序列评测(Long-Context Evaluation)
307
+
308
+ 我们引入NTK插值,LogN注意力缩放,窗口注意力等技巧,将模型的上下文长度扩展到8K以上。在arXiv数据上使用PPL指标测试Qwen-7B在不同长度下的表现,结果如下:
309
+
310
+ **(若要启用NTK和LogN注意力缩放,请将config.json里的`use_dynamic_ntk`和`use_logn_attn`设置为true)**
311
+
312
+ We introduce NTK-aware interpolation, LogN attention scaling, Window attention, etc. to extend the context length to over 8K tokens. We conduct language modeling experiments on the arXiv dataset with the PPL evaluation. Results are demonstrated below:
313
+
314
+ **(To use NTK interpolation and LogN scaling, please set `use_dynamic_ntk` and `use_long_attn` to true in config.json.)**
315
+
316
+ <table>
317
+ <tr>
318
+ <th rowspan="2">Model</th><th colspan="5" align="center">序列长度 Sequence Length</th>
319
+ </tr>
320
+ <tr>
321
+ <th align="center">1024</th><th align="center">2048</th><th align="center">4096</th><th align="center">8192</th><th align="center">16384</th>
322
+ </tr>
323
+ <tr>
324
+ <td>Qwen-7B</td><td align="center"><b>4.23</b></td><td align="center"><b>3.78</b></td><td align="center">39.35</td><td align="center">469.81</td><td align="center">2645.09</td>
325
+ </tr>
326
+ <tr>
327
+ <td>+ dynamic_ntk</td><td align="center"><b>4.23</b></td><td align="center"><b>3.78</b></td><td align="center">3.59</td><td align="center">3.66</td><td align="center">5.71</td>
328
+ </tr>
329
+ <tr>
330
+ <td>+ dynamic_ntk + logn</td><td align="center"><b>4.23</b></td><td align="center"><b>3.78</b></td><td align="center"><b>3.58</b></td><td align="center">3.56</td><td align="center">4.62</td>
331
+ </tr>
332
+ <tr>
333
+ <td>+ dynamic_ntk + logn + window_attn</td><td align="center"><b>4.23</b></td><td align="center"><b>3.78</b></td><td align="center"><b>3.58</b></td><td align="center"><b>3.49</b></td><td align="center"><b>4.32</b></td>
334
+ </tr>
335
+ </table>
336
+ <br>
337
+
338
+ ## 评测复现(Reproduction)
339
+
340
+ 我们提供了评测脚本,方便大家复现模型效果,详见[链接](https://github.com/QwenLM/Qwen-7B/tree/main/eval)。提示:由于硬件和框架造成的舍入误差,复现结果如有小幅波动属于正常现象。
341
+
342
+ We have provided evaluation scripts to reproduce the performance of our model, details as [link](https://github.com/QwenLM/Qwen-7B/tree/main/eval).
343
+ <br>
344
+
345
+ ## FAQ
346
+
347
+ 如遇到问题,敬请查阅[FAQ](https://github.com/QwenLM/Qwen-7B/blob/main/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。
348
+
349
+ If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen-7B/blob/main/FAQ.md) and the issues first to search a solution before you launch a new issue.
350
+ <br>
351
+
352
+ ## 使用协议(License Agreement)
353
+
354
+ 我们的代码和模型权重对学术研究完全开放,并支持商用。请查看[LICENSE](https://github.com/QwenLM/Qwen-7B/blob/main/LICENSE)了解具体的开源协议细节。如需商用,请填写[问卷](https://dashscope.console.aliyun.com/openModelApply/qianwen)申请。
355
+
356
+ Our code and checkpoints are open to research purpose, and they are allowed for commercial purposes. Check [LICENSE](https://github.com/QwenLM/Qwen-7B/blob/main/LICENSE) for more details about the license. If you have requirements for commercial use, please fill out the [form](https://dashscope.console.aliyun.com/openModelApply/qianwen) to apply.
357
+ <br>
358
+
359
+ ## 联系我们(Contact Us)
360
+
361
+ 如果你想给我们的研发团队和产品团队留言,请通过邮件([email protected])联系我们。
362
+
363
+ If you are interested to leave a message to either our research team or product team, feel free to send an email to [email protected].
364
+
assets/logo.jpg ADDED
assets/qwen_tokenizer.png ADDED
assets/wechat.png ADDED
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "QWenLMHeadModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_qwen.QWenConfig",
7
+ "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
8
+ },
9
+ "attn_dropout_prob": 0.0,
10
+ "bf16": false,
11
+ "emb_dropout_prob": 0.0,
12
+ "fp16": false,
13
+ "fp32": false,
14
+ "hidden_size": 4096,
15
+ "intermediate_size": 22016,
16
+ "initializer_range": 0.02,
17
+ "kv_channels": 128,
18
+ "layer_norm_epsilon": 1e-06,
19
+ "max_position_embeddings": 8192,
20
+ "model_type": "qwen",
21
+ "no_bias": true,
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 32,
24
+ "onnx_safe": null,
25
+ "rotary_emb_base": 10000,
26
+ "rotary_pct": 1.0,
27
+ "scale_attn_weights": true,
28
+ "seq_length": 2048,
29
+ "tie_word_embeddings": false,
30
+ "tokenizer_class": "QWenTokenizer",
31
+ "transformers_version": "4.32.0",
32
+ "use_cache": true,
33
+ "use_dynamic_ntk": true,
34
+ "use_flash_attn": "auto",
35
+ "use_logn_attn": true,
36
+ "vocab_size": 151936
37
+ }
configuration_qwen.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "qwen"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=151936,
16
+ hidden_size=4096,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ emb_dropout_prob=0.0,
20
+ attn_dropout_prob=0.0,
21
+ layer_norm_epsilon=1e-6,
22
+ initializer_range=0.02,
23
+ max_position_embeddings=8192,
24
+ scale_attn_weights=True,
25
+ use_cache=True,
26
+ bf16=False,
27
+ fp16=False,
28
+ fp32=False,
29
+ kv_channels=128,
30
+ rotary_pct=1.0,
31
+ rotary_emb_base=10000,
32
+ use_dynamic_ntk=True,
33
+ use_logn_attn=True,
34
+ use_flash_attn="auto",
35
+ intermediate_size=22016,
36
+ no_bias=True,
37
+ tie_word_embeddings=False,
38
+ **kwargs,
39
+ ):
40
+ self.vocab_size = vocab_size
41
+ self.hidden_size = hidden_size
42
+ self.intermediate_size = intermediate_size
43
+ self.num_hidden_layers = num_hidden_layers
44
+ self.num_attention_heads = num_attention_heads
45
+ self.emb_dropout_prob = emb_dropout_prob
46
+ self.attn_dropout_prob = attn_dropout_prob
47
+ self.layer_norm_epsilon = layer_norm_epsilon
48
+ self.initializer_range = initializer_range
49
+ self.scale_attn_weights = scale_attn_weights
50
+ self.use_cache = use_cache
51
+ self.max_position_embeddings = max_position_embeddings
52
+ self.bf16 = bf16
53
+ self.fp16 = fp16
54
+ self.fp32 = fp32
55
+ self.kv_channels = kv_channels
56
+ self.rotary_pct = rotary_pct
57
+ self.rotary_emb_base = rotary_emb_base
58
+ self.use_dynamic_ntk = use_dynamic_ntk
59
+ self.use_logn_attn = use_logn_attn
60
+ self.use_flash_attn = use_flash_attn
61
+ self.no_bias = no_bias
62
+ super().__init__(
63
+ tie_word_embeddings=tie_word_embeddings,
64
+ **kwargs
65
+ )
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "raw",
3
+ "eos_token_id": 151643,
4
+ "pad_token_id": 151643,
5
+ "stop_words_ids": [[151643]],
6
+ "max_new_tokens": 512,
7
+ "do_sample": true,
8
+ "top_k": 0,
9
+ "top_p": 0.8,
10
+ "transformers_version": "4.32.0"
11
+ }
modeling_qwen.py ADDED
@@ -0,0 +1,1232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import importlib
7
+ import math
8
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import torch.utils.checkpoint
13
+ from torch.cuda.amp import autocast
14
+
15
+ from torch.nn import CrossEntropyLoss
16
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
17
+ from transformers.generation.logits_process import LogitsProcessorList
18
+
19
+ if TYPE_CHECKING:
20
+ from transformers.generation.streamers import BaseStreamer
21
+ from transformers.generation.utils import GenerateOutput
22
+ from transformers.modeling_outputs import (
23
+ BaseModelOutputWithPast,
24
+ CausalLMOutputWithPast,
25
+ )
26
+ from transformers.modeling_utils import PreTrainedModel
27
+ from transformers.utils import logging
28
+
29
+ try:
30
+ from einops import rearrange
31
+ except ImportError:
32
+ rearrange = None
33
+ from torch import nn
34
+
35
+ SUPPORT_CUDA = torch.cuda.is_available()
36
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
37
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
38
+
39
+ from .configuration_qwen import QWenConfig
40
+ from .qwen_generation_utils import (
41
+ HistoryType,
42
+ make_context,
43
+ decode_tokens,
44
+ get_stop_words_ids,
45
+ StopWordsLogitsProcessor,
46
+ )
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+ _CHECKPOINT_FOR_DOC = "qwen"
52
+ _CONFIG_FOR_DOC = "QWenConfig"
53
+
54
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
55
+
56
+ _ERROR_BAD_CHAT_FORMAT = """\
57
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
58
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
59
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
60
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
61
+ """
62
+
63
+ _SENTINEL = object()
64
+ _ERROR_STREAM_IN_CHAT = """\
65
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
66
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
67
+ """
68
+
69
+ _ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
70
+ We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
71
+ 检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
72
+ """
73
+
74
+ apply_rotary_emb_func = None
75
+ rms_norm = None
76
+ flash_attn_unpadded_func = None
77
+
78
+
79
+ def _import_flash_attn():
80
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
81
+ try:
82
+ from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
83
+ apply_rotary_emb_func = __apply_rotary_emb_func
84
+ except ImportError:
85
+ logger.warn(
86
+ "Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
87
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
88
+ )
89
+
90
+ try:
91
+ from flash_attn.ops.rms_norm import rms_norm as __rms_norm
92
+ rms_norm = __rms_norm
93
+ except ImportError:
94
+ logger.warn(
95
+ "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
96
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
97
+ )
98
+
99
+ try:
100
+ import flash_attn
101
+ if not hasattr(flash_attn, '__version__'):
102
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
103
+ else:
104
+ if int(flash_attn.__version__.split(".")[0]) >= 2:
105
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
106
+ else:
107
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
108
+ flash_attn_unpadded_func = __flash_attn_unpadded_func
109
+ except ImportError:
110
+ logger.warn(
111
+ "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
112
+ "https://github.com/Dao-AILab/flash-attention"
113
+ )
114
+
115
+
116
+ class FlashSelfAttention(torch.nn.Module):
117
+ def __init__(
118
+ self,
119
+ causal=False,
120
+ softmax_scale=None,
121
+ attention_dropout=0.0,
122
+ ):
123
+ super().__init__()
124
+ assert flash_attn_unpadded_func is not None, (
125
+ "Please install FlashAttention first, " "e.g., with pip install flash-attn"
126
+ )
127
+ assert (
128
+ rearrange is not None
129
+ ), "Please install einops first, e.g., with pip install einops"
130
+ self.causal = causal
131
+ self.softmax_scale = softmax_scale
132
+ self.dropout_p = attention_dropout
133
+
134
+ def forward(self, q, k, v):
135
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
136
+ assert all((i.is_cuda for i in (q, k, v)))
137
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
138
+ seqlen_k = k.shape[1]
139
+
140
+ q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
141
+ cu_seqlens_q = torch.arange(
142
+ 0,
143
+ (batch_size + 1) * seqlen_q,
144
+ step=seqlen_q,
145
+ dtype=torch.int32,
146
+ device=q.device,
147
+ )
148
+
149
+ if self.training:
150
+ assert seqlen_k == seqlen_q
151
+
152
+ is_causal = self.causal
153
+ cu_seqlens_k = cu_seqlens_q
154
+ else:
155
+ is_causal = seqlen_q == seqlen_k
156
+ cu_seqlens_k = torch.arange(
157
+ 0,
158
+ (batch_size + 1) * seqlen_k,
159
+ step=seqlen_k,
160
+ dtype=torch.int32,
161
+ device=q.device,
162
+ )
163
+ self.dropout_p = 0
164
+
165
+ output = flash_attn_unpadded_func(
166
+ q,
167
+ k,
168
+ v,
169
+ cu_seqlens_q,
170
+ cu_seqlens_k,
171
+ seqlen_q,
172
+ seqlen_k,
173
+ self.dropout_p,
174
+ softmax_scale=self.softmax_scale,
175
+ causal=is_causal,
176
+ )
177
+
178
+ new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
179
+ output = output.view(new_shape)
180
+ return output
181
+
182
+
183
+ class QWenAttention(nn.Module):
184
+ def __init__(self, config):
185
+ super().__init__()
186
+
187
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
188
+ self.seq_length = config.seq_length
189
+
190
+ self.hidden_size = config.hidden_size
191
+ self.split_size = config.hidden_size
192
+ self.num_heads = config.num_attention_heads
193
+ self.head_dim = self.hidden_size // self.num_heads
194
+
195
+ self.use_flash_attn = config.use_flash_attn
196
+ self.scale_attn_weights = True
197
+
198
+ self.projection_size = config.kv_channels * config.num_attention_heads
199
+
200
+ assert self.projection_size % config.num_attention_heads == 0
201
+ self.hidden_size_per_attention_head = (
202
+ self.projection_size // config.num_attention_heads
203
+ )
204
+
205
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
206
+
207
+ self.c_proj = nn.Linear(
208
+ config.hidden_size, self.projection_size, bias=not config.no_bias
209
+ )
210
+
211
+ self.is_fp32 = not (config.bf16 or config.fp16)
212
+ if (
213
+ self.use_flash_attn
214
+ and flash_attn_unpadded_func is not None
215
+ and not self.is_fp32
216
+ ):
217
+ self.core_attention_flash = FlashSelfAttention(
218
+ causal=True, attention_dropout=config.attn_dropout_prob
219
+ )
220
+ self.bf16 = config.bf16
221
+
222
+ self.use_dynamic_ntk = config.use_dynamic_ntk
223
+ self.use_logn_attn = config.use_logn_attn
224
+
225
+ logn_list = [
226
+ math.log(i, self.seq_length) if i > self.seq_length else 1
227
+ for i in range(1, 32768)
228
+ ]
229
+ self.logn_tensor = torch.tensor(logn_list)[None, :, None, None]
230
+
231
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
232
+
233
+ def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
234
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
235
+
236
+ if self.scale_attn_weights:
237
+ attn_weights = attn_weights / torch.full(
238
+ [],
239
+ value.size(-1) ** 0.5,
240
+ dtype=attn_weights.dtype,
241
+ device=attn_weights.device,
242
+ )
243
+
244
+ query_length, key_length = query.size(-2), key.size(-2)
245
+ causal_mask = registered_causal_mask[
246
+ :, :, key_length - query_length : key_length, :key_length
247
+ ]
248
+ mask_value = torch.finfo(attn_weights.dtype).min
249
+ mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
250
+ attn_weights.device
251
+ )
252
+ attn_weights = torch.where(
253
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
254
+ )
255
+
256
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
257
+
258
+ attn_weights = attn_weights.type(value.dtype)
259
+ attn_weights = self.attn_dropout(attn_weights)
260
+
261
+ if head_mask is not None:
262
+ attn_weights = attn_weights * head_mask
263
+
264
+ attn_output = torch.matmul(attn_weights, value)
265
+ attn_output = attn_output.transpose(1, 2)
266
+
267
+ return attn_output, attn_weights
268
+
269
+ def _upcast_and_reordered_attn(
270
+ self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None
271
+ ):
272
+ bsz, num_heads, q_seq_len, dk = query.size()
273
+ _, _, k_seq_len, _ = key.size()
274
+
275
+ attn_weights = torch.empty(
276
+ bsz * num_heads,
277
+ q_seq_len,
278
+ k_seq_len,
279
+ dtype=torch.float32,
280
+ device=query.device,
281
+ )
282
+
283
+ scale_factor = 1.0
284
+ if self.scale_attn_weights:
285
+ scale_factor /= float(value.size(-1)) ** 0.5
286
+
287
+ with autocast(enabled=False):
288
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
289
+ -1, dk, k_seq_len
290
+ )
291
+ attn_weights = torch.baddbmm(
292
+ attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
293
+ )
294
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
295
+
296
+ query_length, key_length = query.size(-2), key.size(-2)
297
+ causal_mask = registered_causal_mask[
298
+ :, :, key_length - query_length : key_length, :key_length
299
+ ]
300
+ mask_value = torch.finfo(attn_weights.dtype).min
301
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
302
+ attn_weights.device
303
+ )
304
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
305
+
306
+ if attention_mask is not None:
307
+ attn_weights = attn_weights + attention_mask
308
+
309
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
310
+
311
+ if attn_weights.dtype != torch.float32:
312
+ raise RuntimeError(
313
+ "Error with upcasting, attn_weights does not have dtype torch.float32"
314
+ )
315
+ attn_weights = attn_weights.type(value.dtype)
316
+ attn_weights = self.attn_dropout(attn_weights)
317
+
318
+ if head_mask is not None:
319
+ attn_weights = attn_weights * head_mask
320
+
321
+ attn_output = torch.matmul(attn_weights, value)
322
+
323
+ return attn_output, attn_weights
324
+
325
+ def _split_heads(self, tensor, num_heads, attn_head_size):
326
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
327
+ tensor = tensor.view(new_shape)
328
+ return tensor
329
+
330
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
331
+ tensor = tensor.contiguous()
332
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
333
+ return tensor.view(new_shape)
334
+
335
+ def forward(
336
+ self,
337
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
338
+ rotary_pos_emb: Optional[List[torch.Tensor]] = None,
339
+ registered_causal_mask: Optional[torch.Tensor] = None,
340
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
341
+ attention_mask: Optional[torch.FloatTensor] = None,
342
+ head_mask: Optional[torch.FloatTensor] = None,
343
+ encoder_hidden_states: Optional[torch.Tensor] = None,
344
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
345
+ output_attentions: Optional[bool] = False,
346
+ use_cache: Optional[bool] = False,
347
+ ):
348
+
349
+ mixed_x_layer = self.c_attn(hidden_states)
350
+
351
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
352
+
353
+ query = self._split_heads(query, self.num_heads, self.head_dim)
354
+ key = self._split_heads(key, self.num_heads, self.head_dim)
355
+ value = self._split_heads(value, self.num_heads, self.head_dim)
356
+
357
+ if rotary_pos_emb is not None:
358
+ cur_len = query.shape[1]
359
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
360
+ rotary_pos_emb = (rotary_pos_emb,) * 2
361
+ q_pos_emb, k_pos_emb = rotary_pos_emb
362
+ # Slice the pos emb for current inference
363
+ query = apply_rotary_pos_emb(query, q_pos_emb)
364
+ key = apply_rotary_pos_emb(key, k_pos_emb)
365
+
366
+ if layer_past is not None:
367
+ past_key, past_value = layer_past[0], layer_past[1]
368
+ key = torch.cat((past_key, key), dim=1)
369
+ value = torch.cat((past_value, value), dim=1)
370
+
371
+ if use_cache:
372
+ present = (key, value)
373
+ else:
374
+ present = None
375
+
376
+ if self.use_logn_attn and not self.training:
377
+ if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
378
+ self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
379
+ seq_start = key.size(1) - query.size(1)
380
+ seq_end = key.size(1)
381
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
382
+ query = query * logn_tensor.expand_as(query)
383
+
384
+ if (
385
+ self.use_flash_attn
386
+ and flash_attn_unpadded_func is not None
387
+ and not self.is_fp32
388
+ and query.is_cuda
389
+ ):
390
+ q, k, v = query, key, value
391
+ context_layer = self.core_attention_flash(q, k, v)
392
+
393
+ # b s h d -> b s (h d)
394
+ context_layer = context_layer.flatten(2,3).contiguous()
395
+
396
+ else:
397
+ query = query.permute(0, 2, 1, 3)
398
+ key = key.permute(0, 2, 1, 3)
399
+ value = value.permute(0, 2, 1, 3)
400
+ if (
401
+ registered_causal_mask is None
402
+ and self.use_flash_attn
403
+ and flash_attn_unpadded_func is not None
404
+ and not self.is_fp32
405
+ and not query.is_cuda
406
+ ):
407
+ raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
408
+ attn_output, attn_weight = self._attn(
409
+ query, key, value, registered_causal_mask, attention_mask, head_mask
410
+ )
411
+ context_layer = self._merge_heads(
412
+ attn_output, self.num_heads, self.head_dim
413
+ )
414
+
415
+ attn_output = self.c_proj(context_layer)
416
+
417
+ outputs = (attn_output, present)
418
+ if output_attentions:
419
+ if (
420
+ self.use_flash_attn
421
+ and flash_attn_unpadded_func is not None
422
+ and not self.is_fp32
423
+ ):
424
+ raise ValueError("Cannot output attentions while using flash-attn")
425
+ else:
426
+ outputs += (attn_weight,)
427
+
428
+ return outputs
429
+
430
+
431
+ class QWenMLP(nn.Module):
432
+ def __init__(self, config):
433
+ super().__init__()
434
+ self.w1 = nn.Linear(
435
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
436
+ )
437
+ self.w2 = nn.Linear(
438
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
439
+ )
440
+ ff_dim_in = config.intermediate_size // 2
441
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
442
+
443
+ def forward(self, hidden_states):
444
+ a1 = self.w1(hidden_states)
445
+ a2 = self.w2(hidden_states)
446
+ intermediate_parallel = a1 * F.silu(a2)
447
+ output = self.c_proj(intermediate_parallel)
448
+ return output
449
+
450
+ class QWenBlock(nn.Module):
451
+ def __init__(self, config):
452
+ super().__init__()
453
+ hidden_size = config.hidden_size
454
+ self.bf16 = config.bf16
455
+
456
+ self.ln_1 = RMSNorm(
457
+ hidden_size,
458
+ eps=config.layer_norm_epsilon,
459
+ )
460
+ self.attn = QWenAttention(config)
461
+ self.ln_2 = RMSNorm(
462
+ hidden_size,
463
+ eps=config.layer_norm_epsilon,
464
+ )
465
+
466
+ self.mlp = QWenMLP(config)
467
+
468
+ def forward(
469
+ self,
470
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
471
+ rotary_pos_emb: Optional[List[torch.Tensor]] = None,
472
+ registered_causal_mask: Optional[torch.Tensor] = None,
473
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
474
+ attention_mask: Optional[torch.FloatTensor] = None,
475
+ head_mask: Optional[torch.FloatTensor] = None,
476
+ encoder_hidden_states: Optional[torch.Tensor] = None,
477
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
478
+ use_cache: Optional[bool] = False,
479
+ output_attentions: Optional[bool] = False,
480
+ ):
481
+ layernorm_output = self.ln_1(hidden_states)
482
+
483
+ attn_outputs = self.attn(
484
+ layernorm_output,
485
+ rotary_pos_emb,
486
+ registered_causal_mask=registered_causal_mask,
487
+ layer_past=layer_past,
488
+ attention_mask=attention_mask,
489
+ head_mask=head_mask,
490
+ use_cache=use_cache,
491
+ output_attentions=output_attentions,
492
+ )
493
+ attn_output = attn_outputs[0]
494
+
495
+ outputs = attn_outputs[1:]
496
+
497
+ residual = hidden_states
498
+ layernorm_input = attn_output + residual
499
+
500
+ layernorm_output = self.ln_2(layernorm_input)
501
+
502
+ residual = layernorm_input
503
+ mlp_output = self.mlp(layernorm_output)
504
+ hidden_states = residual + mlp_output
505
+
506
+ if use_cache:
507
+ outputs = (hidden_states,) + outputs
508
+ else:
509
+ outputs = (hidden_states,) + outputs[1:]
510
+
511
+ return outputs
512
+
513
+
514
+ class QWenPreTrainedModel(PreTrainedModel):
515
+ config_class = QWenConfig
516
+ base_model_prefix = "transformer"
517
+ is_parallelizable = False
518
+ supports_gradient_checkpointing = True
519
+ _no_split_modules = ["QWenBlock"]
520
+
521
+ def __init__(self, *inputs, **kwargs):
522
+ super().__init__(*inputs, **kwargs)
523
+
524
+ def _init_weights(self, module):
525
+ """Initialize the weights."""
526
+ if isinstance(module, nn.Linear):
527
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
528
+ if module.bias is not None:
529
+ module.bias.data.zero_()
530
+ elif isinstance(module, nn.Embedding):
531
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
532
+ if module.padding_idx is not None:
533
+ module.weight.data[module.padding_idx].zero_()
534
+ elif isinstance(module, RMSNorm):
535
+ module.weight.data.fill_(1.0)
536
+
537
+ for name, p in module.named_parameters():
538
+ if name == "c_proj.weight":
539
+ p.data.normal_(
540
+ mean=0.0,
541
+ std=(
542
+ self.config.initializer_range
543
+ / math.sqrt(2 * self.config.num_hidden_layers)
544
+ ),
545
+ )
546
+
547
+ def _set_gradient_checkpointing(self, module, value=False):
548
+ if isinstance(module, QWenModel):
549
+ module.gradient_checkpointing = value
550
+
551
+
552
+ class QWenModel(QWenPreTrainedModel):
553
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
554
+
555
+ def __init__(self, config):
556
+ super().__init__(config)
557
+ self.vocab_size = config.vocab_size
558
+ self.num_hidden_layers = config.num_hidden_layers
559
+ self.embed_dim = config.hidden_size
560
+
561
+ self.gradient_checkpointing = False
562
+ self.use_dynamic_ntk = config.use_dynamic_ntk
563
+ self.seq_length = config.seq_length
564
+
565
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
566
+
567
+ self.drop = nn.Dropout(config.emb_dropout_prob)
568
+
569
+ if config.rotary_pct == 1.0:
570
+ self.rotary_ndims = None
571
+ else:
572
+ assert config.rotary_pct < 1
573
+ self.rotary_ndims = int(
574
+ config.kv_channels * config.rotary_pct
575
+ )
576
+ dim = (
577
+ self.rotary_ndims
578
+ if self.rotary_ndims is not None
579
+ else config.kv_channels
580
+ )
581
+ self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
582
+
583
+ self.use_flash_attn = config.use_flash_attn
584
+ self.is_fp32 = not (config.bf16 or config.fp16)
585
+ if (
586
+ self.use_flash_attn
587
+ and flash_attn_unpadded_func is not None
588
+ and not self.is_fp32
589
+ ):
590
+ self.registered_causal_mask = None
591
+ else:
592
+ max_positions = config.max_position_embeddings
593
+ self.register_buffer(
594
+ "registered_causal_mask",
595
+ torch.tril(
596
+ torch.ones((max_positions, max_positions), dtype=torch.bool)
597
+ ).view(1, 1, max_positions, max_positions),
598
+ persistent=False,
599
+ )
600
+
601
+ self.h = nn.ModuleList(
602
+ [
603
+ QWenBlock(
604
+ config
605
+ )
606
+ for i in range(config.num_hidden_layers)
607
+ ]
608
+ )
609
+ self.ln_f = RMSNorm(
610
+ self.embed_dim,
611
+ eps=config.layer_norm_epsilon,
612
+ )
613
+
614
+ self.post_init()
615
+
616
+ def get_input_embeddings(self):
617
+ return self.wte
618
+
619
+ def set_input_embeddings(self, new_embeddings):
620
+ self.wte = new_embeddings
621
+
622
+ def forward(
623
+ self,
624
+ input_ids: Optional[torch.LongTensor] = None,
625
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
626
+ attention_mask: Optional[torch.FloatTensor] = None,
627
+ token_type_ids: Optional[torch.LongTensor] = None,
628
+ position_ids: Optional[torch.LongTensor] = None,
629
+ head_mask: Optional[torch.FloatTensor] = None,
630
+ inputs_embeds: Optional[torch.FloatTensor] = None,
631
+ encoder_hidden_states: Optional[torch.Tensor] = None,
632
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
633
+ use_cache: Optional[bool] = None,
634
+ output_attentions: Optional[bool] = None,
635
+ output_hidden_states: Optional[bool] = None,
636
+ return_dict: Optional[bool] = None,
637
+ ):
638
+ output_attentions = (
639
+ output_attentions
640
+ if output_attentions is not None
641
+ else self.config.output_attentions
642
+ )
643
+ output_hidden_states = (
644
+ output_hidden_states
645
+ if output_hidden_states is not None
646
+ else self.config.output_hidden_states
647
+ )
648
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
649
+ return_dict = (
650
+ return_dict if return_dict is not None else self.config.use_return_dict
651
+ )
652
+
653
+ if input_ids is not None and inputs_embeds is not None:
654
+ raise ValueError(
655
+ "You cannot specify both input_ids and inputs_embeds at the same time"
656
+ )
657
+ elif input_ids is not None:
658
+ input_shape = input_ids.size()
659
+ input_ids = input_ids.view(-1, input_shape[-1])
660
+ batch_size = input_ids.shape[0]
661
+ elif inputs_embeds is not None:
662
+ input_shape = inputs_embeds.size()[:-1]
663
+ batch_size = inputs_embeds.shape[0]
664
+ else:
665
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
666
+
667
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
668
+
669
+ if token_type_ids is not None:
670
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
671
+ if position_ids is not None:
672
+ position_ids = position_ids.view(-1, input_shape[-1])
673
+
674
+ if past_key_values is None:
675
+ past_length = 0
676
+ past_key_values = tuple([None] * len(self.h))
677
+ else:
678
+ past_length = past_key_values[0][0].size(-2)
679
+
680
+ if position_ids is None:
681
+ position_ids = torch.arange(
682
+ past_length,
683
+ input_shape[-1] + past_length,
684
+ dtype=torch.long,
685
+ device=device,
686
+ )
687
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
688
+
689
+ if attention_mask is not None:
690
+ if batch_size <= 0:
691
+ raise ValueError("batch_size has to be defined and > 0")
692
+ attention_mask = attention_mask.view(batch_size, -1)
693
+ attention_mask = attention_mask[:, None, None, :]
694
+ attention_mask = attention_mask.to(dtype=self.dtype)
695
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
696
+
697
+ encoder_attention_mask = None
698
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
699
+
700
+ if inputs_embeds is None:
701
+ inputs_embeds = self.wte(input_ids)
702
+ hidden_states = inputs_embeds
703
+
704
+ kv_seq_len = hidden_states.size()[1]
705
+ if past_key_values[0] is not None:
706
+ # past key values[0][0] shape: bs * seq_len * head_num * dim
707
+ kv_seq_len += past_key_values[0][0].shape[1]
708
+ if (
709
+ self.use_dynamic_ntk
710
+ and kv_seq_len == hidden_states.size()[1]
711
+ and not self.training
712
+ ):
713
+ context_value = math.log(kv_seq_len / self.seq_length, 2) + 1
714
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
715
+ ntk_alpha = max(ntk_alpha, 1)
716
+ else:
717
+ ntk_alpha = self.rotary_emb._ntk_alpha_cached
718
+
719
+ rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha)
720
+ for idx in range(len(rotary_pos_emb)):
721
+ rotary_pos_emb[idx] = rotary_pos_emb[idx].to(hidden_states.device)
722
+
723
+ hidden_states = self.drop(hidden_states)
724
+ output_shape = input_shape + (hidden_states.size(-1),)
725
+
726
+ if self.gradient_checkpointing and self.training:
727
+ if use_cache:
728
+ logger.warning_once(
729
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
730
+ )
731
+ use_cache = False
732
+
733
+ presents = () if use_cache else None
734
+ all_self_attentions = () if output_attentions else None
735
+ all_hidden_states = () if output_hidden_states else None
736
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
737
+
738
+ if output_hidden_states:
739
+ all_hidden_states = all_hidden_states + (hidden_states,)
740
+
741
+ if self.gradient_checkpointing and self.training:
742
+
743
+ def create_custom_forward(module):
744
+ def custom_forward(*inputs):
745
+ # None for past_key_value
746
+ return module(*inputs, use_cache, output_attentions)
747
+
748
+ return custom_forward
749
+
750
+ outputs = torch.utils.checkpoint.checkpoint(
751
+ create_custom_forward(block),
752
+ hidden_states,
753
+ rotary_pos_emb,
754
+ self.registered_causal_mask,
755
+ None,
756
+ attention_mask,
757
+ head_mask[i],
758
+ encoder_hidden_states,
759
+ encoder_attention_mask,
760
+ )
761
+ else:
762
+ outputs = block(
763
+ hidden_states,
764
+ layer_past=layer_past,
765
+ rotary_pos_emb=rotary_pos_emb,
766
+ registered_causal_mask=self.registered_causal_mask,
767
+ attention_mask=attention_mask,
768
+ head_mask=head_mask[i],
769
+ encoder_hidden_states=encoder_hidden_states,
770
+ encoder_attention_mask=encoder_attention_mask,
771
+ use_cache=use_cache,
772
+ output_attentions=output_attentions,
773
+ )
774
+
775
+ hidden_states = outputs[0]
776
+ if use_cache is True:
777
+ presents = presents + (outputs[1],)
778
+
779
+ if output_attentions:
780
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
781
+
782
+ hidden_states = self.ln_f(hidden_states)
783
+ hidden_states = hidden_states.view(output_shape)
784
+ # Add last hidden state
785
+ if output_hidden_states:
786
+ all_hidden_states = all_hidden_states + (hidden_states,)
787
+
788
+ if not return_dict:
789
+ return tuple(
790
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
791
+ )
792
+
793
+ return BaseModelOutputWithPast(
794
+ last_hidden_state=hidden_states,
795
+ past_key_values=presents,
796
+ hidden_states=all_hidden_states,
797
+ attentions=all_self_attentions,
798
+ )
799
+
800
+
801
+ class QWenLMHeadModel(QWenPreTrainedModel):
802
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
803
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
804
+
805
+ def __init__(self, config):
806
+ super().__init__(config)
807
+ assert (
808
+ config.bf16 + config.fp16 + config.fp32 <= 1
809
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
810
+
811
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
812
+
813
+ if autoset_precision:
814
+ if SUPPORT_BF16:
815
+ logger.warn(
816
+ "The model is automatically converting to bf16 for faster inference. "
817
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
818
+ )
819
+ config.bf16 = True
820
+ elif SUPPORT_FP16:
821
+ logger.warn(
822
+ "The model is automatically converting to fp16 for faster inference. "
823
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
824
+ )
825
+ config.fp16 = True
826
+ else:
827
+ config.fp32 = True
828
+
829
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
830
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
831
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
832
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
833
+ if config.fp32:
834
+ if SUPPORT_BF16:
835
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
836
+ elif SUPPORT_FP16:
837
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
838
+
839
+ if config.use_flash_attn == "auto":
840
+ if config.bf16 or config.fp16:
841
+ logger.warn("Try importing flash-attention for faster inference...")
842
+ config.use_flash_attn = True
843
+ else:
844
+ config.use_flash_attn = False
845
+ if config.use_flash_attn and config.fp32:
846
+ logger.warn("Flash attention will be disabled because it does NOT support fp32.")
847
+
848
+ if config.use_flash_attn:
849
+ _import_flash_attn()
850
+
851
+ self.transformer = QWenModel(config)
852
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
853
+
854
+ if config.bf16:
855
+ self.transformer.bfloat16()
856
+ self.lm_head.bfloat16()
857
+ if config.fp16:
858
+ self.transformer.half()
859
+ self.lm_head.half()
860
+ self.post_init()
861
+
862
+ def get_output_embeddings(self):
863
+ return self.lm_head
864
+
865
+ def set_output_embeddings(self, new_embeddings):
866
+ self.lm_head = new_embeddings
867
+
868
+ def prepare_inputs_for_generation(
869
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
870
+ ):
871
+ token_type_ids = kwargs.get("token_type_ids", None)
872
+ if past_key_values:
873
+ input_ids = input_ids[:, -1].unsqueeze(-1)
874
+ if token_type_ids is not None:
875
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
876
+
877
+ attention_mask = kwargs.get("attention_mask", None)
878
+ position_ids = kwargs.get("position_ids", None)
879
+
880
+ if attention_mask is not None and position_ids is None:
881
+ position_ids = attention_mask.long().cumsum(-1) - 1
882
+ position_ids.masked_fill_(attention_mask == 0, 1)
883
+ if past_key_values:
884
+ position_ids = position_ids[:, -1].unsqueeze(-1)
885
+ else:
886
+ position_ids = None
887
+
888
+ if inputs_embeds is not None and past_key_values is None:
889
+ model_inputs = {"inputs_embeds": inputs_embeds}
890
+ else:
891
+ model_inputs = {"input_ids": input_ids}
892
+
893
+ model_inputs.update(
894
+ {
895
+ "past_key_values": past_key_values,
896
+ "use_cache": kwargs.get("use_cache"),
897
+ "position_ids": position_ids,
898
+ "attention_mask": attention_mask,
899
+ "token_type_ids": token_type_ids,
900
+ }
901
+ )
902
+ return model_inputs
903
+
904
+ def forward(
905
+ self,
906
+ input_ids: Optional[torch.LongTensor] = None,
907
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
908
+ attention_mask: Optional[torch.FloatTensor] = None,
909
+ token_type_ids: Optional[torch.LongTensor] = None,
910
+ position_ids: Optional[torch.LongTensor] = None,
911
+ head_mask: Optional[torch.FloatTensor] = None,
912
+ inputs_embeds: Optional[torch.FloatTensor] = None,
913
+ encoder_hidden_states: Optional[torch.Tensor] = None,
914
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
915
+ labels: Optional[torch.LongTensor] = None,
916
+ use_cache: Optional[bool] = None,
917
+ output_attentions: Optional[bool] = None,
918
+ output_hidden_states: Optional[bool] = None,
919
+ return_dict: Optional[bool] = None,
920
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
921
+
922
+ return_dict = (
923
+ return_dict if return_dict is not None else self.config.use_return_dict
924
+ )
925
+
926
+ transformer_outputs = self.transformer(
927
+ input_ids,
928
+ past_key_values=past_key_values,
929
+ attention_mask=attention_mask,
930
+ token_type_ids=token_type_ids,
931
+ position_ids=position_ids,
932
+ head_mask=head_mask,
933
+ inputs_embeds=inputs_embeds,
934
+ encoder_hidden_states=encoder_hidden_states,
935
+ encoder_attention_mask=encoder_attention_mask,
936
+ use_cache=use_cache,
937
+ output_attentions=output_attentions,
938
+ output_hidden_states=output_hidden_states,
939
+ return_dict=return_dict,
940
+ )
941
+ hidden_states = transformer_outputs[0]
942
+
943
+ lm_logits = self.lm_head(hidden_states)
944
+
945
+ loss = None
946
+ if labels is not None:
947
+ labels = labels.to(lm_logits.device)
948
+ shift_logits = lm_logits[..., :-1, :].contiguous()
949
+ shift_labels = labels[..., 1:].contiguous()
950
+ loss_fct = CrossEntropyLoss()
951
+ loss = loss_fct(
952
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
953
+ )
954
+
955
+ if not return_dict:
956
+ output = (lm_logits,) + transformer_outputs[1:]
957
+ return ((loss,) + output) if loss is not None else output
958
+
959
+ return CausalLMOutputWithPast(
960
+ loss=loss,
961
+ logits=lm_logits,
962
+ past_key_values=transformer_outputs.past_key_values,
963
+ hidden_states=transformer_outputs.hidden_states,
964
+ attentions=transformer_outputs.attentions,
965
+ )
966
+
967
+ @staticmethod
968
+ def _reorder_cache(
969
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
970
+ ) -> Tuple[Tuple[torch.Tensor]]:
971
+
972
+ return tuple(
973
+ tuple(
974
+ past_state.index_select(0, beam_idx.to(past_state.device))
975
+ for past_state in layer_past
976
+ )
977
+ for layer_past in past_key_values
978
+ )
979
+
980
+ def chat(
981
+ self,
982
+ tokenizer: PreTrainedTokenizer,
983
+ query: str,
984
+ history: Optional[HistoryType],
985
+ system: str = "You are a helpful assistant.",
986
+ append_history: bool = True,
987
+ stream: Optional[bool] = _SENTINEL,
988
+ stop_words_ids: Optional[List[List[int]]] = None,
989
+ generation_config: Optional[GenerationConfig] = None,
990
+ **kwargs,
991
+ ) -> Tuple[str, HistoryType]:
992
+ generation_config = generation_config if generation_config is not None else self.generation_config
993
+
994
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
995
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
996
+ if history is None:
997
+ history = []
998
+ if stop_words_ids is None:
999
+ stop_words_ids = []
1000
+
1001
+ max_window_size = kwargs.get('max_window_size', None)
1002
+ if max_window_size is None:
1003
+ max_window_size = generation_config.max_window_size
1004
+ raw_text, context_tokens = make_context(
1005
+ tokenizer,
1006
+ query,
1007
+ history=history,
1008
+ system=system,
1009
+ max_window_size=max_window_size,
1010
+ chat_format=generation_config.chat_format,
1011
+ )
1012
+
1013
+ stop_words_ids.extend(get_stop_words_ids(
1014
+ generation_config.chat_format, tokenizer
1015
+ ))
1016
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1017
+ outputs = self.generate(
1018
+ input_ids,
1019
+ stop_words_ids=stop_words_ids,
1020
+ return_dict_in_generate=False,
1021
+ generation_config=generation_config,
1022
+ **kwargs,
1023
+ )
1024
+
1025
+ response = decode_tokens(
1026
+ outputs[0],
1027
+ tokenizer,
1028
+ raw_text_len=len(raw_text),
1029
+ context_length=len(context_tokens),
1030
+ chat_format=generation_config.chat_format,
1031
+ verbose=False,
1032
+ errors='replace'
1033
+ )
1034
+
1035
+ if append_history:
1036
+ history.append((query, response))
1037
+
1038
+ return response, history
1039
+
1040
+ def chat_stream(
1041
+ self,
1042
+ tokenizer: PreTrainedTokenizer,
1043
+ query: str,
1044
+ history: Optional[HistoryType],
1045
+ system: str = "You are a helpful assistant.",
1046
+ stop_words_ids: Optional[List[List[int]]] = None,
1047
+ logits_processor: Optional[LogitsProcessorList] = None,
1048
+ generation_config: Optional[GenerationConfig] = None,
1049
+ **kwargs,
1050
+ ) -> Generator[str, Any, None]:
1051
+ generation_config = generation_config if generation_config is not None else self.generation_config
1052
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1053
+ if history is None:
1054
+ history = []
1055
+ if stop_words_ids is None:
1056
+ stop_words_ids = []
1057
+
1058
+ max_window_size = kwargs.get('max_window_size', None)
1059
+ if max_window_size is None:
1060
+ max_window_size = generation_config.max_window_size
1061
+ raw_text, context_tokens = make_context(
1062
+ tokenizer,
1063
+ query,
1064
+ history=history,
1065
+ system=system,
1066
+ max_window_size=max_window_size,
1067
+ chat_format=generation_config.chat_format,
1068
+ )
1069
+
1070
+ stop_words_ids.extend(get_stop_words_ids(
1071
+ generation_config.chat_format, tokenizer
1072
+ ))
1073
+ if stop_words_ids is not None:
1074
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1075
+ stop_words_ids=stop_words_ids,
1076
+ eos_token_id=generation_config.eos_token_id,
1077
+ )
1078
+ if logits_processor is None:
1079
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1080
+ else:
1081
+ logits_processor.append(stop_words_logits_processor)
1082
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1083
+
1084
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
1085
+ self.__class__.generate_stream = NewGenerationMixin.generate
1086
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
1087
+ stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
1088
+
1089
+ def stream_generator():
1090
+ outputs = []
1091
+ for token in self.generate_stream(
1092
+ input_ids,
1093
+ return_dict_in_generate=False,
1094
+ generation_config=stream_config,
1095
+ logits_processor=logits_processor,
1096
+ seed=-1,
1097
+ **kwargs):
1098
+ outputs.append(token.item())
1099
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
1100
+
1101
+ return stream_generator()
1102
+
1103
+ def generate(
1104
+ self,
1105
+ inputs: Optional[torch.Tensor] = None,
1106
+ generation_config: Optional[GenerationConfig] = None,
1107
+ logits_processor: Optional[LogitsProcessorList] = None,
1108
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1109
+ prefix_allowed_tokens_fn: Optional[
1110
+ Callable[[int, torch.Tensor], List[int]]
1111
+ ] = None,
1112
+ synced_gpus: Optional[bool] = None,
1113
+ assistant_model: Optional["PreTrainedModel"] = None,
1114
+ streamer: Optional["BaseStreamer"] = None,
1115
+ **kwargs,
1116
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1117
+ generation_config = generation_config if generation_config is not None else self.generation_config
1118
+
1119
+ # Process stop_words_ids.
1120
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1121
+ if stop_words_ids is None and generation_config is not None:
1122
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1123
+ if stop_words_ids is None:
1124
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1125
+
1126
+ if stop_words_ids is not None:
1127
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1128
+ stop_words_ids=stop_words_ids,
1129
+ eos_token_id=generation_config.eos_token_id,
1130
+ )
1131
+ if logits_processor is None:
1132
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1133
+ else:
1134
+ logits_processor.append(stop_words_logits_processor)
1135
+
1136
+ return super().generate(
1137
+ inputs,
1138
+ generation_config=generation_config,
1139
+ logits_processor=logits_processor,
1140
+ stopping_criteria=stopping_criteria,
1141
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1142
+ synced_gpus=synced_gpus,
1143
+ assistant_model=assistant_model,
1144
+ streamer=streamer,
1145
+ **kwargs,
1146
+ )
1147
+
1148
+
1149
+ class RotaryEmbedding(torch.nn.Module):
1150
+ def __init__(self, dim, base=10000):
1151
+ super().__init__()
1152
+ self.dim = dim
1153
+ self.base = base
1154
+ self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1155
+ if importlib.util.find_spec("einops") is None:
1156
+ raise RuntimeError("einops is required for Rotary Embedding")
1157
+
1158
+ self._rotary_pos_emb_cache = None
1159
+ self._seq_len_cached = 0
1160
+ self._ntk_alpha_cached = 1.0
1161
+
1162
+ def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
1163
+ seqlen = max_seq_len + offset
1164
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1165
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1166
+ self.inv_freq = 1.0 / (
1167
+ base
1168
+ ** (
1169
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1170
+ / self.dim
1171
+ )
1172
+ )
1173
+ self._seq_len_cached = max(2 * seqlen, 16)
1174
+ self._ntk_alpha_cached = ntk_alpha
1175
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1176
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1177
+
1178
+ emb = torch.cat((freqs, freqs), dim=-1)
1179
+ from einops import rearrange
1180
+
1181
+ emb = rearrange(emb, "n d -> 1 n 1 d")
1182
+
1183
+ cos, sin = emb.cos(), emb.sin()
1184
+ self._rotary_pos_emb_cache = [cos, sin]
1185
+
1186
+ def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
1187
+ self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
1188
+ cos, sin = self._rotary_pos_emb_cache
1189
+ return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]]
1190
+
1191
+
1192
+ def _rotate_half(x):
1193
+ from einops import rearrange
1194
+
1195
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1196
+ x1, x2 = x.unbind(dim=-2)
1197
+ return torch.cat((-x2, x1), dim=-1)
1198
+
1199
+
1200
+ def apply_rotary_pos_emb(t, freqs):
1201
+ cos, sin = freqs
1202
+ if apply_rotary_emb_func is not None and t.is_cuda:
1203
+ t_ = t.float()
1204
+ cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2]
1205
+ sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2]
1206
+ output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
1207
+ return output
1208
+ else:
1209
+ rot_dim = freqs[0].shape[-1]
1210
+ cos, sin = freqs
1211
+ t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
1212
+ t_ = t_.float()
1213
+ t_pass_ = t_pass_.float()
1214
+ t_ = (t_ * cos) + (_rotate_half(t_) * sin)
1215
+ return torch.cat((t_, t_pass_), dim=-1).type_as(t)
1216
+
1217
+
1218
+ class RMSNorm(torch.nn.Module):
1219
+ def __init__(self, dim: int, eps: float = 1e-6):
1220
+ super().__init__()
1221
+ self.eps = eps
1222
+ self.weight = nn.Parameter(torch.ones(dim))
1223
+
1224
+ def _norm(self, x):
1225
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1226
+
1227
+ def forward(self, x):
1228
+ if rms_norm is not None and x.is_cuda:
1229
+ return rms_norm(x, self.weight, self.eps)
1230
+ else:
1231
+ output = self._norm(x.float()).type_as(x)
1232
+ return output * self.weight
pytorch_model-00001-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7745c0eaee03bce032fce81490cfa4e334fa59bdbf14840db184bddcd3b86a35
3
+ size 1964070447
pytorch_model-00002-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2524b0f63b9d29bd9d90104a1fdccbf6c2dcb273e04425c9b5b6f1cf0e992fd8
3
+ size 1933792141
pytorch_model-00003-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a9ea1b3a9ee6f37eed063e3e5c644353309cf94bc56982828c5a6d9928a3cd4
3
+ size 1933792141
pytorch_model-00004-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2cc1bb2883740aa748acd9cee2d855290a1f93b13461fa73b7b8e5531a32ab7f
3
+ size 1990406779
pytorch_model-00005-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ced11d31cc1cba12973fa92fd6450a1700767d2ae5c730be909f70abcca946a8
3
+ size 1923281531
pytorch_model-00006-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f46c56789137dbcd6920b7887cd639648934cf0442bc587fc05a8f7afbb02ada
3
+ size 1933783675
pytorch_model-00007-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e995e6f9502910e1f1dbf109df6b6a7db3733cd9adccd2d408e2f3a0d5549900
3
+ size 1933792205
pytorch_model-00008-of-00008.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be9fc9fd671dd29258478946724308e1f63c3fbf18c689294b46532ccf0515db
3
+ size 1829818663
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15442649088
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00008-of-00008.bin",
7
+ "transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00008.bin",
8
+ "transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00008.bin",
9
+ "transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00008.bin",
10
+ "transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00008.bin",
11
+ "transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00008.bin",
12
+ "transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00008.bin",
13
+ "transformer.h.0.mlp.w1.weight": "pytorch_model-00001-of-00008.bin",
14
+ "transformer.h.0.mlp.w2.weight": "pytorch_model-00001-of-00008.bin",
15
+ "transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00008.bin",
16
+ "transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00008.bin",
17
+ "transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00008.bin",
18
+ "transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00008.bin",
19
+ "transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00008.bin",
20
+ "transformer.h.1.mlp.c_proj.weight": "pytorch_model-00002-of-00008.bin",
21
+ "transformer.h.1.mlp.w1.weight": "pytorch_model-00001-of-00008.bin",
22
+ "transformer.h.1.mlp.w2.weight": "pytorch_model-00001-of-00008.bin",
23
+ "transformer.h.10.attn.c_attn.bias": "pytorch_model-00003-of-00008.bin",
24
+ "transformer.h.10.attn.c_attn.weight": "pytorch_model-00003-of-00008.bin",
25
+ "transformer.h.10.attn.c_proj.weight": "pytorch_model-00003-of-00008.bin",
26
+ "transformer.h.10.ln_1.weight": "pytorch_model-00003-of-00008.bin",
27
+ "transformer.h.10.ln_2.weight": "pytorch_model-00003-of-00008.bin",
28
+ "transformer.h.10.mlp.c_proj.weight": "pytorch_model-00003-of-00008.bin",
29
+ "transformer.h.10.mlp.w1.weight": "pytorch_model-00003-of-00008.bin",
30
+ "transformer.h.10.mlp.w2.weight": "pytorch_model-00003-of-00008.bin",
31
+ "transformer.h.11.attn.c_attn.bias": "pytorch_model-00003-of-00008.bin",
32
+ "transformer.h.11.attn.c_attn.weight": "pytorch_model-00003-of-00008.bin",
33
+ "transformer.h.11.attn.c_proj.weight": "pytorch_model-00003-of-00008.bin",
34
+ "transformer.h.11.ln_1.weight": "pytorch_model-00003-of-00008.bin",
35
+ "transformer.h.11.ln_2.weight": "pytorch_model-00003-of-00008.bin",
36
+ "transformer.h.11.mlp.c_proj.weight": "pytorch_model-00004-of-00008.bin",
37
+ "transformer.h.11.mlp.w1.weight": "pytorch_model-00004-of-00008.bin",
38
+ "transformer.h.11.mlp.w2.weight": "pytorch_model-00004-of-00008.bin",
39
+ "transformer.h.12.attn.c_attn.bias": "pytorch_model-00004-of-00008.bin",
40
+ "transformer.h.12.attn.c_attn.weight": "pytorch_model-00004-of-00008.bin",
41
+ "transformer.h.12.attn.c_proj.weight": "pytorch_model-00004-of-00008.bin",
42
+ "transformer.h.12.ln_1.weight": "pytorch_model-00004-of-00008.bin",
43
+ "transformer.h.12.ln_2.weight": "pytorch_model-00004-of-00008.bin",
44
+ "transformer.h.12.mlp.c_proj.weight": "pytorch_model-00004-of-00008.bin",
45
+ "transformer.h.12.mlp.w1.weight": "pytorch_model-00004-of-00008.bin",
46
+ "transformer.h.12.mlp.w2.weight": "pytorch_model-00004-of-00008.bin",
47
+ "transformer.h.13.attn.c_attn.bias": "pytorch_model-00004-of-00008.bin",
48
+ "transformer.h.13.attn.c_attn.weight": "pytorch_model-00004-of-00008.bin",
49
+ "transformer.h.13.attn.c_proj.weight": "pytorch_model-00004-of-00008.bin",
50
+ "transformer.h.13.ln_1.weight": "pytorch_model-00004-of-00008.bin",
51
+ "transformer.h.13.ln_2.weight": "pytorch_model-00004-of-00008.bin",
52
+ "transformer.h.13.mlp.c_proj.weight": "pytorch_model-00004-of-00008.bin",
53
+ "transformer.h.13.mlp.w1.weight": "pytorch_model-00004-of-00008.bin",
54
+ "transformer.h.13.mlp.w2.weight": "pytorch_model-00004-of-00008.bin",
55
+ "transformer.h.14.attn.c_attn.bias": "pytorch_model-00004-of-00008.bin",
56
+ "transformer.h.14.attn.c_attn.weight": "pytorch_model-00004-of-00008.bin",
57
+ "transformer.h.14.attn.c_proj.weight": "pytorch_model-00004-of-00008.bin",
58
+ "transformer.h.14.ln_1.weight": "pytorch_model-00004-of-00008.bin",
59
+ "transformer.h.14.ln_2.weight": "pytorch_model-00004-of-00008.bin",
60
+ "transformer.h.14.mlp.c_proj.weight": "pytorch_model-00004-of-00008.bin",
61
+ "transformer.h.14.mlp.w1.weight": "pytorch_model-00004-of-00008.bin",
62
+ "transformer.h.14.mlp.w2.weight": "pytorch_model-00004-of-00008.bin",
63
+ "transformer.h.15.attn.c_attn.bias": "pytorch_model-00004-of-00008.bin",
64
+ "transformer.h.15.attn.c_attn.weight": "pytorch_model-00004-of-00008.bin",
65
+ "transformer.h.15.attn.c_proj.weight": "pytorch_model-00004-of-00008.bin",
66
+ "transformer.h.15.ln_1.weight": "pytorch_model-00004-of-00008.bin",
67
+ "transformer.h.15.ln_2.weight": "pytorch_model-00004-of-00008.bin",
68
+ "transformer.h.15.mlp.c_proj.weight": "pytorch_model-00004-of-00008.bin",
69
+ "transformer.h.15.mlp.w1.weight": "pytorch_model-00004-of-00008.bin",
70
+ "transformer.h.15.mlp.w2.weight": "pytorch_model-00004-of-00008.bin",
71
+ "transformer.h.16.attn.c_attn.bias": "pytorch_model-00004-of-00008.bin",
72
+ "transformer.h.16.attn.c_attn.weight": "pytorch_model-00004-of-00008.bin",
73
+ "transformer.h.16.attn.c_proj.weight": "pytorch_model-00005-of-00008.bin",
74
+ "transformer.h.16.ln_1.weight": "pytorch_model-00004-of-00008.bin",
75
+ "transformer.h.16.ln_2.weight": "pytorch_model-00005-of-00008.bin",
76
+ "transformer.h.16.mlp.c_proj.weight": "pytorch_model-00005-of-00008.bin",
77
+ "transformer.h.16.mlp.w1.weight": "pytorch_model-00005-of-00008.bin",
78
+ "transformer.h.16.mlp.w2.weight": "pytorch_model-00005-of-00008.bin",
79
+ "transformer.h.17.attn.c_attn.bias": "pytorch_model-00005-of-00008.bin",
80
+ "transformer.h.17.attn.c_attn.weight": "pytorch_model-00005-of-00008.bin",
81
+ "transformer.h.17.attn.c_proj.weight": "pytorch_model-00005-of-00008.bin",
82
+ "transformer.h.17.ln_1.weight": "pytorch_model-00005-of-00008.bin",
83
+ "transformer.h.17.ln_2.weight": "pytorch_model-00005-of-00008.bin",
84
+ "transformer.h.17.mlp.c_proj.weight": "pytorch_model-00005-of-00008.bin",
85
+ "transformer.h.17.mlp.w1.weight": "pytorch_model-00005-of-00008.bin",
86
+ "transformer.h.17.mlp.w2.weight": "pytorch_model-00005-of-00008.bin",
87
+ "transformer.h.18.attn.c_attn.bias": "pytorch_model-00005-of-00008.bin",
88
+ "transformer.h.18.attn.c_attn.weight": "pytorch_model-00005-of-00008.bin",
89
+ "transformer.h.18.attn.c_proj.weight": "pytorch_model-00005-of-00008.bin",
90
+ "transformer.h.18.ln_1.weight": "pytorch_model-00005-of-00008.bin",
91
+ "transformer.h.18.ln_2.weight": "pytorch_model-00005-of-00008.bin",
92
+ "transformer.h.18.mlp.c_proj.weight": "pytorch_model-00005-of-00008.bin",
93
+ "transformer.h.18.mlp.w1.weight": "pytorch_model-00005-of-00008.bin",
94
+ "transformer.h.18.mlp.w2.weight": "pytorch_model-00005-of-00008.bin",
95
+ "transformer.h.19.attn.c_attn.bias": "pytorch_model-00005-of-00008.bin",
96
+ "transformer.h.19.attn.c_attn.weight": "pytorch_model-00005-of-00008.bin",
97
+ "transformer.h.19.attn.c_proj.weight": "pytorch_model-00005-of-00008.bin",
98
+ "transformer.h.19.ln_1.weight": "pytorch_model-00005-of-00008.bin",
99
+ "transformer.h.19.ln_2.weight": "pytorch_model-00005-of-00008.bin",
100
+ "transformer.h.19.mlp.c_proj.weight": "pytorch_model-00005-of-00008.bin",
101
+ "transformer.h.19.mlp.w1.weight": "pytorch_model-00005-of-00008.bin",
102
+ "transformer.h.19.mlp.w2.weight": "pytorch_model-00005-of-00008.bin",
103
+ "transformer.h.2.attn.c_attn.bias": "pytorch_model-00002-of-00008.bin",
104
+ "transformer.h.2.attn.c_attn.weight": "pytorch_model-00002-of-00008.bin",
105
+ "transformer.h.2.attn.c_proj.weight": "pytorch_model-00002-of-00008.bin",
106
+ "transformer.h.2.ln_1.weight": "pytorch_model-00002-of-00008.bin",
107
+ "transformer.h.2.ln_2.weight": "pytorch_model-00002-of-00008.bin",
108
+ "transformer.h.2.mlp.c_proj.weight": "pytorch_model-00002-of-00008.bin",
109
+ "transformer.h.2.mlp.w1.weight": "pytorch_model-00002-of-00008.bin",
110
+ "transformer.h.2.mlp.w2.weight": "pytorch_model-00002-of-00008.bin",
111
+ "transformer.h.20.attn.c_attn.bias": "pytorch_model-00005-of-00008.bin",
112
+ "transformer.h.20.attn.c_attn.weight": "pytorch_model-00005-of-00008.bin",
113
+ "transformer.h.20.attn.c_proj.weight": "pytorch_model-00005-of-00008.bin",
114
+ "transformer.h.20.ln_1.weight": "pytorch_model-00005-of-00008.bin",
115
+ "transformer.h.20.ln_2.weight": "pytorch_model-00005-of-00008.bin",
116
+ "transformer.h.20.mlp.c_proj.weight": "pytorch_model-00005-of-00008.bin",
117
+ "transformer.h.20.mlp.w1.weight": "pytorch_model-00005-of-00008.bin",
118
+ "transformer.h.20.mlp.w2.weight": "pytorch_model-00005-of-00008.bin",
119
+ "transformer.h.21.attn.c_attn.bias": "pytorch_model-00006-of-00008.bin",
120
+ "transformer.h.21.attn.c_attn.weight": "pytorch_model-00006-of-00008.bin",
121
+ "transformer.h.21.attn.c_proj.weight": "pytorch_model-00006-of-00008.bin",
122
+ "transformer.h.21.ln_1.weight": "pytorch_model-00005-of-00008.bin",
123
+ "transformer.h.21.ln_2.weight": "pytorch_model-00006-of-00008.bin",
124
+ "transformer.h.21.mlp.c_proj.weight": "pytorch_model-00006-of-00008.bin",
125
+ "transformer.h.21.mlp.w1.weight": "pytorch_model-00006-of-00008.bin",
126
+ "transformer.h.21.mlp.w2.weight": "pytorch_model-00006-of-00008.bin",
127
+ "transformer.h.22.attn.c_attn.bias": "pytorch_model-00006-of-00008.bin",
128
+ "transformer.h.22.attn.c_attn.weight": "pytorch_model-00006-of-00008.bin",
129
+ "transformer.h.22.attn.c_proj.weight": "pytorch_model-00006-of-00008.bin",
130
+ "transformer.h.22.ln_1.weight": "pytorch_model-00006-of-00008.bin",
131
+ "transformer.h.22.ln_2.weight": "pytorch_model-00006-of-00008.bin",
132
+ "transformer.h.22.mlp.c_proj.weight": "pytorch_model-00006-of-00008.bin",
133
+ "transformer.h.22.mlp.w1.weight": "pytorch_model-00006-of-00008.bin",
134
+ "transformer.h.22.mlp.w2.weight": "pytorch_model-00006-of-00008.bin",
135
+ "transformer.h.23.attn.c_attn.bias": "pytorch_model-00006-of-00008.bin",
136
+ "transformer.h.23.attn.c_attn.weight": "pytorch_model-00006-of-00008.bin",
137
+ "transformer.h.23.attn.c_proj.weight": "pytorch_model-00006-of-00008.bin",
138
+ "transformer.h.23.ln_1.weight": "pytorch_model-00006-of-00008.bin",
139
+ "transformer.h.23.ln_2.weight": "pytorch_model-00006-of-00008.bin",
140
+ "transformer.h.23.mlp.c_proj.weight": "pytorch_model-00006-of-00008.bin",
141
+ "transformer.h.23.mlp.w1.weight": "pytorch_model-00006-of-00008.bin",
142
+ "transformer.h.23.mlp.w2.weight": "pytorch_model-00006-of-00008.bin",
143
+ "transformer.h.24.attn.c_attn.bias": "pytorch_model-00006-of-00008.bin",
144
+ "transformer.h.24.attn.c_attn.weight": "pytorch_model-00006-of-00008.bin",
145
+ "transformer.h.24.attn.c_proj.weight": "pytorch_model-00006-of-00008.bin",
146
+ "transformer.h.24.ln_1.weight": "pytorch_model-00006-of-00008.bin",
147
+ "transformer.h.24.ln_2.weight": "pytorch_model-00006-of-00008.bin",
148
+ "transformer.h.24.mlp.c_proj.weight": "pytorch_model-00006-of-00008.bin",
149
+ "transformer.h.24.mlp.w1.weight": "pytorch_model-00006-of-00008.bin",
150
+ "transformer.h.24.mlp.w2.weight": "pytorch_model-00006-of-00008.bin",
151
+ "transformer.h.25.attn.c_attn.bias": "pytorch_model-00006-of-00008.bin",
152
+ "transformer.h.25.attn.c_attn.weight": "pytorch_model-00006-of-00008.bin",
153
+ "transformer.h.25.attn.c_proj.weight": "pytorch_model-00006-of-00008.bin",
154
+ "transformer.h.25.ln_1.weight": "pytorch_model-00006-of-00008.bin",
155
+ "transformer.h.25.ln_2.weight": "pytorch_model-00006-of-00008.bin",
156
+ "transformer.h.25.mlp.c_proj.weight": "pytorch_model-00007-of-00008.bin",
157
+ "transformer.h.25.mlp.w1.weight": "pytorch_model-00006-of-00008.bin",
158
+ "transformer.h.25.mlp.w2.weight": "pytorch_model-00006-of-00008.bin",
159
+ "transformer.h.26.attn.c_attn.bias": "pytorch_model-00007-of-00008.bin",
160
+ "transformer.h.26.attn.c_attn.weight": "pytorch_model-00007-of-00008.bin",
161
+ "transformer.h.26.attn.c_proj.weight": "pytorch_model-00007-of-00008.bin",
162
+ "transformer.h.26.ln_1.weight": "pytorch_model-00007-of-00008.bin",
163
+ "transformer.h.26.ln_2.weight": "pytorch_model-00007-of-00008.bin",
164
+ "transformer.h.26.mlp.c_proj.weight": "pytorch_model-00007-of-00008.bin",
165
+ "transformer.h.26.mlp.w1.weight": "pytorch_model-00007-of-00008.bin",
166
+ "transformer.h.26.mlp.w2.weight": "pytorch_model-00007-of-00008.bin",
167
+ "transformer.h.27.attn.c_attn.bias": "pytorch_model-00007-of-00008.bin",
168
+ "transformer.h.27.attn.c_attn.weight": "pytorch_model-00007-of-00008.bin",
169
+ "transformer.h.27.attn.c_proj.weight": "pytorch_model-00007-of-00008.bin",
170
+ "transformer.h.27.ln_1.weight": "pytorch_model-00007-of-00008.bin",
171
+ "transformer.h.27.ln_2.weight": "pytorch_model-00007-of-00008.bin",
172
+ "transformer.h.27.mlp.c_proj.weight": "pytorch_model-00007-of-00008.bin",
173
+ "transformer.h.27.mlp.w1.weight": "pytorch_model-00007-of-00008.bin",
174
+ "transformer.h.27.mlp.w2.weight": "pytorch_model-00007-of-00008.bin",
175
+ "transformer.h.28.attn.c_attn.bias": "pytorch_model-00007-of-00008.bin",
176
+ "transformer.h.28.attn.c_attn.weight": "pytorch_model-00007-of-00008.bin",
177
+ "transformer.h.28.attn.c_proj.weight": "pytorch_model-00007-of-00008.bin",
178
+ "transformer.h.28.ln_1.weight": "pytorch_model-00007-of-00008.bin",
179
+ "transformer.h.28.ln_2.weight": "pytorch_model-00007-of-00008.bin",
180
+ "transformer.h.28.mlp.c_proj.weight": "pytorch_model-00007-of-00008.bin",
181
+ "transformer.h.28.mlp.w1.weight": "pytorch_model-00007-of-00008.bin",
182
+ "transformer.h.28.mlp.w2.weight": "pytorch_model-00007-of-00008.bin",
183
+ "transformer.h.29.attn.c_attn.bias": "pytorch_model-00007-of-00008.bin",
184
+ "transformer.h.29.attn.c_attn.weight": "pytorch_model-00007-of-00008.bin",
185
+ "transformer.h.29.attn.c_proj.weight": "pytorch_model-00007-of-00008.bin",
186
+ "transformer.h.29.ln_1.weight": "pytorch_model-00007-of-00008.bin",
187
+ "transformer.h.29.ln_2.weight": "pytorch_model-00007-of-00008.bin",
188
+ "transformer.h.29.mlp.c_proj.weight": "pytorch_model-00007-of-00008.bin",
189
+ "transformer.h.29.mlp.w1.weight": "pytorch_model-00007-of-00008.bin",
190
+ "transformer.h.29.mlp.w2.weight": "pytorch_model-00007-of-00008.bin",
191
+ "transformer.h.3.attn.c_attn.bias": "pytorch_model-00002-of-00008.bin",
192
+ "transformer.h.3.attn.c_attn.weight": "pytorch_model-00002-of-00008.bin",
193
+ "transformer.h.3.attn.c_proj.weight": "pytorch_model-00002-of-00008.bin",
194
+ "transformer.h.3.ln_1.weight": "pytorch_model-00002-of-00008.bin",
195
+ "transformer.h.3.ln_2.weight": "pytorch_model-00002-of-00008.bin",
196
+ "transformer.h.3.mlp.c_proj.weight": "pytorch_model-00002-of-00008.bin",
197
+ "transformer.h.3.mlp.w1.weight": "pytorch_model-00002-of-00008.bin",
198
+ "transformer.h.3.mlp.w2.weight": "pytorch_model-00002-of-00008.bin",
199
+ "transformer.h.30.attn.c_attn.bias": "pytorch_model-00007-of-00008.bin",
200
+ "transformer.h.30.attn.c_attn.weight": "pytorch_model-00007-of-00008.bin",
201
+ "transformer.h.30.attn.c_proj.weight": "pytorch_model-00007-of-00008.bin",
202
+ "transformer.h.30.ln_1.weight": "pytorch_model-00007-of-00008.bin",
203
+ "transformer.h.30.ln_2.weight": "pytorch_model-00007-of-00008.bin",
204
+ "transformer.h.30.mlp.c_proj.weight": "pytorch_model-00008-of-00008.bin",
205
+ "transformer.h.30.mlp.w1.weight": "pytorch_model-00007-of-00008.bin",
206
+ "transformer.h.30.mlp.w2.weight": "pytorch_model-00008-of-00008.bin",
207
+ "transformer.h.31.attn.c_attn.bias": "pytorch_model-00008-of-00008.bin",
208
+ "transformer.h.31.attn.c_attn.weight": "pytorch_model-00008-of-00008.bin",
209
+ "transformer.h.31.attn.c_proj.weight": "pytorch_model-00008-of-00008.bin",
210
+ "transformer.h.31.ln_1.weight": "pytorch_model-00008-of-00008.bin",
211
+ "transformer.h.31.ln_2.weight": "pytorch_model-00008-of-00008.bin",
212
+ "transformer.h.31.mlp.c_proj.weight": "pytorch_model-00008-of-00008.bin",
213
+ "transformer.h.31.mlp.w1.weight": "pytorch_model-00008-of-00008.bin",
214
+ "transformer.h.31.mlp.w2.weight": "pytorch_model-00008-of-00008.bin",
215
+ "transformer.h.4.attn.c_attn.bias": "pytorch_model-00002-of-00008.bin",
216
+ "transformer.h.4.attn.c_attn.weight": "pytorch_model-00002-of-00008.bin",
217
+ "transformer.h.4.attn.c_proj.weight": "pytorch_model-00002-of-00008.bin",
218
+ "transformer.h.4.ln_1.weight": "pytorch_model-00002-of-00008.bin",
219
+ "transformer.h.4.ln_2.weight": "pytorch_model-00002-of-00008.bin",
220
+ "transformer.h.4.mlp.c_proj.weight": "pytorch_model-00002-of-00008.bin",
221
+ "transformer.h.4.mlp.w1.weight": "pytorch_model-00002-of-00008.bin",
222
+ "transformer.h.4.mlp.w2.weight": "pytorch_model-00002-of-00008.bin",
223
+ "transformer.h.5.attn.c_attn.bias": "pytorch_model-00002-of-00008.bin",
224
+ "transformer.h.5.attn.c_attn.weight": "pytorch_model-00002-of-00008.bin",
225
+ "transformer.h.5.attn.c_proj.weight": "pytorch_model-00002-of-00008.bin",
226
+ "transformer.h.5.ln_1.weight": "pytorch_model-00002-of-00008.bin",
227
+ "transformer.h.5.ln_2.weight": "pytorch_model-00002-of-00008.bin",
228
+ "transformer.h.5.mlp.c_proj.weight": "pytorch_model-00002-of-00008.bin",
229
+ "transformer.h.5.mlp.w1.weight": "pytorch_model-00002-of-00008.bin",
230
+ "transformer.h.5.mlp.w2.weight": "pytorch_model-00002-of-00008.bin",
231
+ "transformer.h.6.attn.c_attn.bias": "pytorch_model-00002-of-00008.bin",
232
+ "transformer.h.6.attn.c_attn.weight": "pytorch_model-00002-of-00008.bin",
233
+ "transformer.h.6.attn.c_proj.weight": "pytorch_model-00002-of-00008.bin",
234
+ "transformer.h.6.ln_1.weight": "pytorch_model-00002-of-00008.bin",
235
+ "transformer.h.6.ln_2.weight": "pytorch_model-00002-of-00008.bin",
236
+ "transformer.h.6.mlp.c_proj.weight": "pytorch_model-00003-of-00008.bin",
237
+ "transformer.h.6.mlp.w1.weight": "pytorch_model-00002-of-00008.bin",
238
+ "transformer.h.6.mlp.w2.weight": "pytorch_model-00003-of-00008.bin",
239
+ "transformer.h.7.attn.c_attn.bias": "pytorch_model-00003-of-00008.bin",
240
+ "transformer.h.7.attn.c_attn.weight": "pytorch_model-00003-of-00008.bin",
241
+ "transformer.h.7.attn.c_proj.weight": "pytorch_model-00003-of-00008.bin",
242
+ "transformer.h.7.ln_1.weight": "pytorch_model-00003-of-00008.bin",
243
+ "transformer.h.7.ln_2.weight": "pytorch_model-00003-of-00008.bin",
244
+ "transformer.h.7.mlp.c_proj.weight": "pytorch_model-00003-of-00008.bin",
245
+ "transformer.h.7.mlp.w1.weight": "pytorch_model-00003-of-00008.bin",
246
+ "transformer.h.7.mlp.w2.weight": "pytorch_model-00003-of-00008.bin",
247
+ "transformer.h.8.attn.c_attn.bias": "pytorch_model-00003-of-00008.bin",
248
+ "transformer.h.8.attn.c_attn.weight": "pytorch_model-00003-of-00008.bin",
249
+ "transformer.h.8.attn.c_proj.weight": "pytorch_model-00003-of-00008.bin",
250
+ "transformer.h.8.ln_1.weight": "pytorch_model-00003-of-00008.bin",
251
+ "transformer.h.8.ln_2.weight": "pytorch_model-00003-of-00008.bin",
252
+ "transformer.h.8.mlp.c_proj.weight": "pytorch_model-00003-of-00008.bin",
253
+ "transformer.h.8.mlp.w1.weight": "pytorch_model-00003-of-00008.bin",
254
+ "transformer.h.8.mlp.w2.weight": "pytorch_model-00003-of-00008.bin",
255
+ "transformer.h.9.attn.c_attn.bias": "pytorch_model-00003-of-00008.bin",
256
+ "transformer.h.9.attn.c_attn.weight": "pytorch_model-00003-of-00008.bin",
257
+ "transformer.h.9.attn.c_proj.weight": "pytorch_model-00003-of-00008.bin",
258
+ "transformer.h.9.ln_1.weight": "pytorch_model-00003-of-00008.bin",
259
+ "transformer.h.9.ln_2.weight": "pytorch_model-00003-of-00008.bin",
260
+ "transformer.h.9.mlp.c_proj.weight": "pytorch_model-00003-of-00008.bin",
261
+ "transformer.h.9.mlp.w1.weight": "pytorch_model-00003-of-00008.bin",
262
+ "transformer.h.9.mlp.w2.weight": "pytorch_model-00003-of-00008.bin",
263
+ "transformer.ln_f.weight": "pytorch_model-00008-of-00008.bin",
264
+ "transformer.wte.weight": "pytorch_model-00001-of-00008.bin"
265
+ }
266
+ }
qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
qwen_generation_utils.py ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Generation support."""
7
+
8
+ from typing import Tuple, List, Union, Iterable
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from transformers import PreTrainedTokenizer
14
+ from transformers import logging
15
+ from transformers.generation import LogitsProcessor
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+ # Types.
20
+ HistoryType = List[Tuple[str, str]]
21
+ TokensType = List[int]
22
+ BatchTokensType = List[List[int]]
23
+
24
+
25
+ def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
26
+ for tokens in batch:
27
+ context_length = len(tokens)
28
+ if context_length < seq_length:
29
+ tokens.extend([pad_id] * (seq_length - context_length))
30
+ return batch
31
+
32
+
33
+ def get_ltor_masks_and_position_ids(
34
+ data,
35
+ eod_token,
36
+ reset_position_ids,
37
+ reset_attention_mask,
38
+ eod_mask_loss,
39
+ ):
40
+ """Build masks and position id for left to right model."""
41
+
42
+ # Extract batch size and sequence length.
43
+ micro_batch_size, seq_length = data.size()
44
+
45
+ # Attention mask (lower triangular).
46
+ if reset_attention_mask:
47
+ att_mask_batch = micro_batch_size
48
+ else:
49
+ att_mask_batch = 1
50
+ attention_mask = torch.tril(
51
+ torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
52
+ ).view(att_mask_batch, 1, seq_length, seq_length)
53
+
54
+ # Loss mask.
55
+ loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
56
+ if eod_mask_loss:
57
+ loss_mask[data == eod_token] = 0.0
58
+
59
+ # Position ids.
60
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
61
+ position_ids = position_ids.unsqueeze(0).expand_as(data)
62
+ # We need to clone as the ids will be modifed based on batch index.
63
+ if reset_position_ids:
64
+ position_ids = position_ids.clone()
65
+
66
+ if reset_position_ids or reset_attention_mask:
67
+ # Loop through the batches:
68
+ for b in range(micro_batch_size):
69
+
70
+ # Find indecies where EOD token is.
71
+ eod_index = position_ids[b, data[b] == eod_token]
72
+ # Detach indecies from positions if going to modify positions.
73
+ if reset_position_ids:
74
+ eod_index = eod_index.clone()
75
+
76
+ # Loop through EOD indecies:
77
+ prev_index = 0
78
+ for j in range(eod_index.size()[0]):
79
+ i = eod_index[j]
80
+ # Mask attention loss.
81
+ if reset_attention_mask:
82
+ attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
83
+ # Reset positions.
84
+ if reset_position_ids:
85
+ position_ids[b, (i + 1) :] -= i + 1 - prev_index
86
+ prev_index = i + 1
87
+
88
+ # Convert attention mask to binary:
89
+ attention_mask = attention_mask < 0.5
90
+
91
+ return attention_mask, loss_mask, position_ids
92
+
93
+
94
+ def get_batch(context_tokens: torch.LongTensor, eod_id: int):
95
+ """Generate batch from context tokens."""
96
+ # Move to GPU.
97
+ tokens = context_tokens.contiguous().to(context_tokens.device)
98
+ # Get the attention mask and postition ids.
99
+ attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
100
+ tokens,
101
+ eod_id,
102
+ reset_position_ids=False,
103
+ reset_attention_mask=False,
104
+ eod_mask_loss=False,
105
+ )
106
+ return tokens, attention_mask, position_ids
107
+
108
+
109
+ def get_stop_words_ids(chat_format, tokenizer):
110
+ if chat_format == "raw":
111
+ stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
112
+ elif chat_format == "chatml":
113
+ stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
114
+ else:
115
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
116
+ return stop_words_ids
117
+
118
+
119
+ def make_context(
120
+ tokenizer: PreTrainedTokenizer,
121
+ query: str,
122
+ history: List[Tuple[str, str]] = None,
123
+ system: str = "",
124
+ max_window_size: int = 6144,
125
+ chat_format: str = "chatml",
126
+ ):
127
+ if history is None:
128
+ history = []
129
+
130
+ if chat_format == "chatml":
131
+ im_start, im_end = "<|im_start|>", "<|im_end|>"
132
+ im_start_tokens = [tokenizer.im_start_id]
133
+ im_end_tokens = [tokenizer.im_end_id]
134
+ nl_tokens = tokenizer.encode("\n")
135
+
136
+ def _tokenize_str(role, content):
137
+ return f"{role}\n{content}", tokenizer.encode(
138
+ role, allowed_special=set()
139
+ ) + nl_tokens + tokenizer.encode(content, allowed_special=set())
140
+
141
+ system_text, system_tokens_part = _tokenize_str("system", system)
142
+ system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
143
+
144
+ raw_text = ""
145
+ context_tokens = []
146
+
147
+ for turn_query, turn_response in reversed(history):
148
+ query_text, query_tokens_part = _tokenize_str("user", turn_query)
149
+ query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
150
+ response_text, response_tokens_part = _tokenize_str(
151
+ "assistant", turn_response
152
+ )
153
+ response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
154
+
155
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
156
+ prev_chat = (
157
+ f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
158
+ )
159
+
160
+ current_context_size = (
161
+ len(system_tokens) + len(next_context_tokens) + len(context_tokens)
162
+ )
163
+ if current_context_size < max_window_size:
164
+ context_tokens = next_context_tokens + context_tokens
165
+ raw_text = prev_chat + raw_text
166
+ else:
167
+ break
168
+
169
+ context_tokens = system_tokens + context_tokens
170
+ raw_text = f"{im_start}{system_text}{im_end}" + raw_text
171
+ context_tokens += (
172
+ nl_tokens
173
+ + im_start_tokens
174
+ + _tokenize_str("user", query)[1]
175
+ + im_end_tokens
176
+ + nl_tokens
177
+ + im_start_tokens
178
+ + tokenizer.encode("assistant")
179
+ + nl_tokens
180
+ )
181
+ raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
182
+
183
+ elif chat_format == "raw":
184
+ raw_text = query
185
+ context_tokens = tokenizer.encode(raw_text)
186
+ else:
187
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
188
+
189
+ return raw_text, context_tokens
190
+
191
+
192
+ def _decode_default(
193
+ tokens: List[int],
194
+ *,
195
+ stop_words: List[str],
196
+ eod_words: List[str],
197
+ tokenizer: PreTrainedTokenizer,
198
+ raw_text_len: int,
199
+ verbose: bool = False,
200
+ return_end_reason: bool = False,
201
+ errors: str='replace',
202
+ ):
203
+ trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
204
+ if verbose:
205
+ print("\nRaw Generate: ", trim_decode_tokens)
206
+
207
+ end_reason = f"Gen length {len(tokens)}"
208
+ for stop_word in stop_words:
209
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
210
+ for eod_word in eod_words:
211
+ if eod_word in trim_decode_tokens:
212
+ end_reason = f"Gen {eod_word!r}"
213
+ trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
214
+ trim_decode_tokens = trim_decode_tokens.strip()
215
+ if verbose:
216
+ print("\nEnd Reason:", end_reason)
217
+ print("\nGenerate: ", trim_decode_tokens)
218
+
219
+ if return_end_reason:
220
+ return trim_decode_tokens, end_reason
221
+ else:
222
+ return trim_decode_tokens
223
+
224
+
225
+ def _decode_chatml(
226
+ tokens: List[int],
227
+ *,
228
+ stop_words: List[str],
229
+ eod_token_ids: List[int],
230
+ tokenizer: PreTrainedTokenizer,
231
+ raw_text_len: int,
232
+ context_length: int,
233
+ verbose: bool = False,
234
+ return_end_reason: bool = False,
235
+ errors: str='replace'
236
+ ):
237
+ end_reason = f"Gen length {len(tokens)}"
238
+ eod_token_idx = context_length
239
+ for eod_token_idx in range(context_length, len(tokens)):
240
+ if tokens[eod_token_idx] in eod_token_ids:
241
+ end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
242
+ break
243
+
244
+ trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
245
+ if verbose:
246
+ print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
247
+ print("\nRaw Generate:", trim_decode_tokens)
248
+ print("\nEnd Reason:", end_reason)
249
+ for stop_word in stop_words:
250
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
251
+ trim_decode_tokens = trim_decode_tokens.strip()
252
+ if verbose:
253
+ print("\nGenerate:", trim_decode_tokens)
254
+
255
+ if return_end_reason:
256
+ return trim_decode_tokens, end_reason
257
+ else:
258
+ return trim_decode_tokens
259
+
260
+
261
+ def decode_tokens(
262
+ tokens: Union[torch.LongTensor, TokensType],
263
+ tokenizer: PreTrainedTokenizer,
264
+ raw_text_len: int,
265
+ context_length: int,
266
+ chat_format: str,
267
+ verbose: bool = False,
268
+ return_end_reason: bool = False,
269
+ errors: str="replace",
270
+ ) -> str:
271
+ if torch.is_tensor(tokens):
272
+ tokens = tokens.cpu().numpy().tolist()
273
+
274
+ if chat_format == "chatml":
275
+ return _decode_chatml(
276
+ tokens,
277
+ stop_words=[],
278
+ eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
279
+ tokenizer=tokenizer,
280
+ raw_text_len=raw_text_len,
281
+ context_length=context_length,
282
+ verbose=verbose,
283
+ return_end_reason=return_end_reason,
284
+ errors=errors,
285
+ )
286
+ elif chat_format == "raw":
287
+ return _decode_default(
288
+ tokens,
289
+ stop_words=["<|endoftext|>"],
290
+ eod_words=["<|endoftext|>"],
291
+ tokenizer=tokenizer,
292
+ raw_text_len=raw_text_len,
293
+ verbose=verbose,
294
+ return_end_reason=return_end_reason,
295
+ errors=errors,
296
+ )
297
+ else:
298
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
299
+
300
+
301
+ class StopWordsLogitsProcessor(LogitsProcessor):
302
+ """
303
+ :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
304
+
305
+ Args:
306
+ stop_words_ids (:obj:`List[List[int]]`):
307
+ List of list of token ids of stop ids. In order to get the tokens of the words
308
+ that should not appear in the generated text, use :obj:`tokenizer(bad_word,
309
+ add_prefix_space=True).input_ids`.
310
+ eos_token_id (:obj:`int`):
311
+ The id of the `end-of-sequence` token.
312
+ """
313
+
314
+ def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
315
+
316
+ if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
317
+ raise ValueError(
318
+ f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
319
+ )
320
+ if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
321
+ raise ValueError(
322
+ f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
323
+ )
324
+ if any(
325
+ any(
326
+ (not isinstance(token_id, (int, np.integer)) or token_id < 0)
327
+ for token_id in stop_word_ids
328
+ )
329
+ for stop_word_ids in stop_words_ids
330
+ ):
331
+ raise ValueError(
332
+ f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
333
+ )
334
+
335
+ self.stop_words_ids = list(
336
+ filter(
337
+ lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
338
+ )
339
+ )
340
+ self.eos_token_id = eos_token_id
341
+ for stop_token_seq in self.stop_words_ids:
342
+ assert (
343
+ len(stop_token_seq) > 0
344
+ ), "Stop words token sequences {} cannot have an empty list".format(
345
+ stop_words_ids
346
+ )
347
+
348
+ def __call__(
349
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor
350
+ ) -> torch.FloatTensor:
351
+ stopped_samples = self._calc_stopped_samples(input_ids)
352
+ for i, should_stop in enumerate(stopped_samples):
353
+ if should_stop:
354
+ scores[i, self.eos_token_id] = float(2**15)
355
+ return scores
356
+
357
+ def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
358
+ if len(tokens) == 0:
359
+ # if bad word tokens is just one token always ban it
360
+ return True
361
+ elif len(tokens) > len(prev_tokens):
362
+ # if bad word tokens are longer then prev input_ids they can't be equal
363
+ return False
364
+ elif prev_tokens[-len(tokens) :].tolist() == tokens:
365
+ # if tokens match
366
+ return True
367
+ else:
368
+ return False
369
+
370
+ def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
371
+ stopped_samples = []
372
+ for prev_input_ids_slice in prev_input_ids:
373
+ match = False
374
+ for stop_token_seq in self.stop_words_ids:
375
+ if self._tokens_match(prev_input_ids_slice, stop_token_seq):
376
+ # if tokens do not match continue
377
+ match = True
378
+ break
379
+ stopped_samples.append(match)
380
+
381
+ return stopped_samples
382
+
383
+
384
+ def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
385
+ """This function has been mostly taken from huggingface conversational
386
+ ai code at
387
+ https://medium.com/huggingface/how-to-build-a-state-of-the-art-
388
+ conversational-ai-with-transfer-learning-2d818ac26313"""
389
+
390
+ if top_k > 0:
391
+ # Remove all tokens with a probability less than the
392
+ # last token of the top-k
393
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
394
+ logits[indices_to_remove] = filter_value
395
+
396
+ if top_p > 0.0:
397
+ # Cconvert to 1D
398
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
399
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
400
+
401
+ # Remove tokens with cumulative probability above the threshold
402
+ sorted_indices_to_remove = cumulative_probs > top_p
403
+ # Shift the indices to the right to keep also the first token
404
+ # above the threshold
405
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
406
+ sorted_indices_to_remove[..., 0] = 0
407
+ for i in range(sorted_indices.size(0)):
408
+ indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
409
+ logits[i][indices_to_remove] = filter_value
410
+
411
+ return logits
412
+
413
+
414
+ def switch(val1, val2, boolean):
415
+ boolean = boolean.type_as(val1)
416
+ return (1 - boolean) * val1 + boolean * val2
tokenization_qwen.py ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import Collection, Dict, List, Set, Tuple, Union
13
+
14
+ import tiktoken
15
+ from transformers import PreTrainedTokenizer, AddedToken
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
+
22
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
+ ENDOFTEXT = "<|endoftext|>"
24
+ IMSTART = "<|im_start|>"
25
+ IMEND = "<|im_end|>"
26
+ # as the default behavior is changed to allow special tokens in
27
+ # regular texts, the surface forms of special tokens need to be
28
+ # as different as possible to minimize the impact
29
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ SPECIAL_TOKENS = (
31
+ ENDOFTEXT,
32
+ IMSTART,
33
+ IMEND,
34
+ ) + EXTRAS
35
+
36
+
37
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
38
+ with open(tiktoken_bpe_file, "rb") as f:
39
+ contents = f.read()
40
+ return {
41
+ base64.b64decode(token): int(rank)
42
+ for token, rank in (line.split() for line in contents.splitlines() if line)
43
+ }
44
+
45
+ class QWenTokenizer(PreTrainedTokenizer):
46
+ """QWen tokenizer."""
47
+
48
+ vocab_files_names = VOCAB_FILES_NAMES
49
+
50
+ def __init__(
51
+ self,
52
+ vocab_file,
53
+ errors="replace",
54
+ **kwargs,
55
+ ):
56
+ super().__init__(**kwargs)
57
+
58
+ self.errors = errors # how to handle errors in decoding
59
+
60
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
61
+ self.special_tokens = {
62
+ token: index
63
+ for index, token in enumerate(
64
+ SPECIAL_TOKENS, start=len(self.mergeable_ranks)
65
+ )
66
+ }
67
+
68
+ enc = tiktoken.Encoding(
69
+ "Qwen",
70
+ pat_str=PAT_STR,
71
+ mergeable_ranks=self.mergeable_ranks,
72
+ special_tokens=self.special_tokens,
73
+ )
74
+ assert (
75
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
76
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
77
+
78
+ self.decoder = {
79
+ v: k for k, v in self.mergeable_ranks.items()
80
+ } # type: dict[int, bytes|str]
81
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
82
+
83
+ self.tokenizer = enc # type: tiktoken.Encoding
84
+
85
+ self.eod_id = self.tokenizer.eot_token
86
+ self.im_start_id = self.special_tokens[IMSTART]
87
+ self.im_end_id = self.special_tokens[IMEND]
88
+
89
+ def __getstate__(self):
90
+ # for pickle lovers
91
+ state = self.__dict__.copy()
92
+ del state['tokenizer']
93
+ return state
94
+
95
+ def __setstate__(self, state):
96
+ # tokenizer is not python native; don't pass it; rebuild it
97
+ self.__dict__.update(state)
98
+ enc = tiktoken.Encoding(
99
+ "Qwen",
100
+ pat_str=PAT_STR,
101
+ mergeable_ranks=self.mergeable_ranks,
102
+ special_tokens=self.special_tokens,
103
+ )
104
+ self.tokenizer = enc
105
+
106
+
107
+ def __len__(self) -> int:
108
+ return self.tokenizer.n_vocab
109
+
110
+ def get_vocab(self) -> Dict[bytes, int]:
111
+ return self.mergeable_ranks
112
+
113
+ def convert_tokens_to_ids(
114
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
115
+ ) -> List[int]:
116
+ ids = []
117
+ if isinstance(tokens, (str, bytes)):
118
+ if tokens in self.special_tokens:
119
+ return self.special_tokens[tokens]
120
+ else:
121
+ return self.mergeable_ranks.get(tokens)
122
+ for token in tokens:
123
+ if token in self.special_tokens:
124
+ ids.append(self.special_tokens[token])
125
+ else:
126
+ ids.append(self.mergeable_ranks.get(token))
127
+ return ids
128
+
129
+ def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
130
+ if not special_tokens and new_tokens:
131
+ raise ValueError('Adding regular tokens is not supported')
132
+ for token in new_tokens:
133
+ surface_form = token.content if isinstance(token, AddedToken) else token
134
+ if surface_form not in SPECIAL_TOKENS:
135
+ raise ValueError('Adding unknown special tokens is not supported')
136
+ return 0
137
+
138
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
139
+ """
140
+ Save only the vocabulary of the tokenizer (vocabulary).
141
+
142
+ Returns:
143
+ `Tuple(str)`: Paths to the files saved.
144
+ """
145
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
146
+ with open(file_path, "w", encoding="utf8") as w:
147
+ for k, v in self.mergeable_ranks.items():
148
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
149
+ w.write(line)
150
+ return (file_path,)
151
+
152
+ def tokenize(
153
+ self,
154
+ text: str,
155
+ allowed_special: Union[Set, str] = "all",
156
+ disallowed_special: Union[Collection, str] = (),
157
+ **kwargs,
158
+ ) -> List[Union[bytes, str]]:
159
+ """
160
+ Converts a string in a sequence of tokens.
161
+
162
+ Args:
163
+ text (`str`):
164
+ The sequence to be encoded.
165
+ allowed_special (`Literal["all"]` or `set`):
166
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
167
+ Default to "all".
168
+ disallowed_special (`Literal["all"]` or `Collection`):
169
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
170
+ Default to an empty tuple.
171
+
172
+ kwargs (additional keyword arguments, *optional*):
173
+ Will be passed to the underlying model specific encode method.
174
+
175
+ Returns:
176
+ `List[bytes|str]`: The list of tokens.
177
+ """
178
+ tokens = []
179
+ text = unicodedata.normalize("NFC", text)
180
+
181
+ # this implementation takes a detour: text -> token id -> token surface forms
182
+ for t in self.tokenizer.encode(
183
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
184
+ ):
185
+ tokens.append(self.decoder[t])
186
+ return tokens
187
+
188
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
189
+ """
190
+ Converts a sequence of tokens in a single string.
191
+ """
192
+ text = ""
193
+ temp = b""
194
+ for t in tokens:
195
+ if isinstance(t, str):
196
+ if temp:
197
+ text += temp.decode("utf-8", errors=self.errors)
198
+ temp = b""
199
+ text += t
200
+ elif isinstance(t, bytes):
201
+ temp += t
202
+ else:
203
+ raise TypeError("token should only be of type types or str")
204
+ if temp:
205
+ text += temp.decode("utf-8", errors=self.errors)
206
+ return text
207
+
208
+ @property
209
+ def vocab_size(self):
210
+ return self.tokenizer.n_vocab
211
+
212
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
213
+ """Converts an id to a token, special tokens included"""
214
+ if index in self.decoder:
215
+ return self.decoder[index]
216
+ raise ValueError("unknown ids")
217
+
218
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
219
+ """Converts a token to an id using the vocab, special tokens included"""
220
+ if token in self.special_tokens:
221
+ return self.special_tokens[token]
222
+ if token in self.mergeable_ranks:
223
+ return self.mergeable_ranks[token]
224
+ raise ValueError("unknown token")
225
+
226
+ def _tokenize(self, text: str, **kwargs):
227
+ """
228
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
229
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
230
+
231
+ Do NOT take care of added tokens.
232
+ """
233
+ raise NotImplementedError
234
+
235
+ def _decode(
236
+ self,
237
+ token_ids: Union[int, List[int]],
238
+ skip_special_tokens: bool = False,
239
+ errors: str = None,
240
+ **kwargs,
241
+ ) -> str:
242
+ if isinstance(token_ids, int):
243
+ token_ids = [token_ids]
244
+ if skip_special_tokens:
245
+ token_ids = [i for i in token_ids if i < self.eod_id]
246
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_max_length": 8192,
3
+ "tokenizer_class": "QWenTokenizer",
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_qwen.QWenTokenizer",
7
+ null
8
+ ]
9
+ }
10
+ }