--- license: bigcode-openrail-m datasets: - bigcode/guanaco-commits metrics: - code_eval library_name: peft tags: - code --- # Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models <p align="center" width="100%"> <a ><img src="https://github.com/bigcode-project/astraios/blob/main/visuals/banner.png?raw=true" alt="Astraios" style="width: 20%; min-width: 300px; display: block; margin: auto;"></a> </p> # Table of Contents 1. [Model Summary](#model-summary) 2. [Use](#use) 3. [Training](#training) 4. [Citation](#citation) # Model Summary > Astraios-Parallel Adapter is an instruction tuned model with 15.5B parameters created by finetuning StarCoderBase on CommitPackFT & OASST as described in the Astraios paper. - **Repository:** [bigcode-project/astraios](https://github.com/bigcode-project/astraios) - **Paper:** [Astraios: Parameter-Efficient Instruction Tuning Code Large Language Models]() - **Languages:** 80+ Programming languages - **✨Astraios:** <table> <tr> <th>Data</t> <td><a href=https://huggingface.co/datasets/bigcode/guanaco-commits>CommitPackFT+OASST</a></td> <td>Filtered version of CommitPack and OASST for high-quality commit messages that resemble instructions</td> </tr> <tr> <th>Model</t> <td><a href=https://huggingface.co/collections/bigcode/astraios-1b-6576ff1b8e449026ae327c1c>Astraios-1B</a></td> <td>Collection of StarCoderBase-1B models instruction tuned on CommitPackFT + OASST with different tuning methods</td> </tr> <tr> <th></t> <td><a href=https://huggingface.co/collections/bigcode/astraios-3b-6577127317ee44ff547252d3>Astraios-3B</a></td> <td>Collection of StarCoderBase-3B (3B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td> </tr> <tr> <th></t> <td><a href=https://huggingface.co/collections/starpeft/starcoderbase-7b-650c1f028b45cfec8e72c265>Astraios-7B</a></td> <td>Collection of StarCoderBase-7B (7B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td> </tr> <tr> <th></t> <td><a href=https://huggingface.co/collections/bigcode/astraios-16b-65788b7476b6de79781054cc>Astraios-16B</a></td> <td>Collection of StarCoderBase-16B (16B parameters) models instruction tuned on CommitPackFT + OASST with different tuning methods</td> </tr> <tr> <th>Evaluation</t> <td><a href=https://huggingface.co/datasets/code_x_glue_cc_clone_detection_big_clone_bench>BigCloneBench</a></td> <td>Dataset for clone detection; We use 2,000 samples for evaluation</td> </tr> <tr> <th></t> <td><a href=https://huggingface.co/datasets/code_x_glue_cc_defect_detection>Devign</a></td> <td>Dataset for defect detection; We use 2,000 samples for evaluation</td> </tr> <tr> <th></t> <td><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack</a></td> <td>Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages</td> </tr> <tr> <th></t> <td><a href=https://huggingface.co/datasets/RaymondLi/perturbed_humaneval>ReCode</a></td> <td>Dataset for the robustness of code generation, covering 4 variants</td> </tr> <tr> <th></t> <td><a href=https://huggingface.co/datasets/moyix/asleep_keyboard>Asleep At The Keyboard</a></td> <td>Datasets for security of code generation; We use DoW for evaluation</td> </tr> </table> # Use ## Intended use The model follows instructions provided in the input. You should always preface your input with "Question: " and finish it with "Answer:", for example: "Question: Please write a function in Python that performs bubble sort. Answer:" **Feel free to share your generations in the Community tab!** ## Generation ```python # pip install -q transformers # pip install -e git+https://github.com/bigcode-project/astraios#subdirectory=peft from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer peft_checkpoint = "bigcode/astraios-parallel" checkpoint = "bigcode/starcoderbase" model = AutoModelForCausalLM.from_pretrained(checkpoint) model = PeftModel.from_pretrained(model, peft_checkpoint) device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("Question: Please write a function in Python that performs bubble sort. Answer:", return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` # Training ## Model - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective - **Steps:** 250k pretraining & 200 instruction tuning - **Precision:** fp32 ## Hardware - **Pretraining:** - **GPUs:** 512 Tesla A100 - **Training time:** 24 days - **Instruction tuning:** - **GPUs:** 8 Tesla A100 ## Software - **Orchestration:** [Megatron-LM/Transformers](https://github.com/bigcode-project/octopack#training) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) # Citation ```bibtex ```