bilalzafar commited on
Commit
716256d
·
verified ·
1 Parent(s): f6625db

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -3
README.md CHANGED
@@ -110,10 +110,27 @@ If you use this model in your research or applications, please cite our paper:
110
  ```python
111
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
112
 
 
113
  tokenizer = AutoTokenizer.from_pretrained("bilalzafar/FinAI-BERT-IslamicBanks")
114
  model = AutoModelForSequenceClassification.from_pretrained("bilalzafar/FinAI-BERT-IslamicBanks")
115
 
 
116
  classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
117
- result = classifier("Our Shariah-compliant bank has deployed AI-driven credit risk assessment tools.")
118
- print(result)
119
- # Output: [{'label': 'LABEL_1', 'score': ...}] # LABEL_1 = AI, LABEL_0 = Non-AI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  ```python
111
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
112
 
113
+ # Load tokenizer and model
114
  tokenizer = AutoTokenizer.from_pretrained("bilalzafar/FinAI-BERT-IslamicBanks")
115
  model = AutoModelForSequenceClassification.from_pretrained("bilalzafar/FinAI-BERT-IslamicBanks")
116
 
117
+ # Create the pipeline
118
  classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
119
+
120
+ # Label mapping
121
+ label_map = {
122
+ "LABEL_0": "Non-AI",
123
+ "LABEL_1": "AI"
124
+ }
125
+
126
+ # Input text
127
+ text = "Our Shariah-compliant bank has deployed AI-driven credit risk assessment tools."
128
+
129
+ # Run classification
130
+ result = classifier(text)[0]
131
+
132
+ # Output
133
+ label = label_map.get(result['label'], result['label'])
134
+ score = result['score']
135
+ print(f"Classification: {label} | Score: {score:.4f}")
136
+