--- library_name: transformers license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: deberta-base results: [] --- # deberta-base This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1665 - Accuracy: 0.9601 - Precision: 0.9599 - Recall: 0.9601 - F1: 0.9594 - Auroc: 0.9928 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - label_smoothing_factor: 0.03 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auroc | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 0.4866 | 0.0988 | 256 | 0.2931 | 0.8845 | 0.8939 | 0.8845 | 0.8876 | 0.9465 | | 0.2757 | 0.1977 | 512 | 0.3478 | 0.8898 | 0.8984 | 0.8898 | 0.8765 | 0.9544 | | 0.2433 | 0.2965 | 768 | 0.2097 | 0.9404 | 0.9413 | 0.9404 | 0.9408 | 0.9799 | | 0.2332 | 0.3953 | 1024 | 0.3548 | 0.8815 | 0.8907 | 0.8815 | 0.8657 | 0.9690 | | 0.2152 | 0.4942 | 1280 | 0.1942 | 0.9440 | 0.9434 | 0.9440 | 0.9426 | 0.9868 | | 0.1907 | 0.5930 | 1536 | 0.1615 | 0.9649 | 0.9647 | 0.9649 | 0.9647 | 0.9899 | | 0.1865 | 0.6918 | 1792 | 0.1556 | 0.9655 | 0.9654 | 0.9655 | 0.9654 | 0.9922 | | 0.1865 | 0.7907 | 2048 | 0.2322 | 0.9369 | 0.9370 | 0.9369 | 0.9344 | 0.9773 | | 0.168 | 0.8895 | 2304 | 0.1653 | 0.9672 | 0.9670 | 0.9672 | 0.9668 | 0.9937 | | 0.1732 | 0.9883 | 2560 | 0.1467 | 0.9702 | 0.9716 | 0.9702 | 0.9706 | 0.9935 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0