Update README.md
Browse files
README.md
CHANGED
@@ -32,17 +32,17 @@ The species list is derived from data available at <https://www.israbirding.com/
|
|
32 |
import birder
|
33 |
from birder.inference.classification import infer_image
|
34 |
|
35 |
-
(net,
|
36 |
|
37 |
# Get the image size the model was trained on
|
38 |
-
size = birder.get_size_from_signature(signature)
|
39 |
|
40 |
# Create an inference transform
|
41 |
-
transform = birder.classification_transform(size, rgb_stats)
|
42 |
|
43 |
image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
|
44 |
(out, _) = infer_image(net, image, transform)
|
45 |
-
# out is a NumPy array with shape of (1,
|
46 |
```
|
47 |
|
48 |
### Image Embeddings
|
@@ -51,17 +51,17 @@ image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
|
|
51 |
import birder
|
52 |
from birder.inference.classification import infer_image
|
53 |
|
54 |
-
(net,
|
55 |
|
56 |
# Get the image size the model was trained on
|
57 |
-
size = birder.get_size_from_signature(signature)
|
58 |
|
59 |
# Create an inference transform
|
60 |
-
transform = birder.classification_transform(size, rgb_stats)
|
61 |
|
62 |
image = "path/to/image.jpeg" # or a PIL image
|
63 |
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
|
64 |
-
# embedding is a NumPy array with shape of (1,
|
65 |
```
|
66 |
|
67 |
### Detection Feature Map
|
@@ -70,13 +70,13 @@ image = "path/to/image.jpeg" # or a PIL image
|
|
70 |
from PIL import Image
|
71 |
import birder
|
72 |
|
73 |
-
(net,
|
74 |
|
75 |
# Get the image size the model was trained on
|
76 |
-
size = birder.get_size_from_signature(signature)
|
77 |
|
78 |
# Create an inference transform
|
79 |
-
transform = birder.classification_transform(size, rgb_stats)
|
80 |
|
81 |
image = Image.open("path/to/image.jpeg")
|
82 |
features = net.detection_features(transform(image).unsqueeze(0))
|
|
|
32 |
import birder
|
33 |
from birder.inference.classification import infer_image
|
34 |
|
35 |
+
(net, model_info) = birder.load_pretrained_model("davit_tiny_il-all", inference=True)
|
36 |
|
37 |
# Get the image size the model was trained on
|
38 |
+
size = birder.get_size_from_signature(model_info.signature)
|
39 |
|
40 |
# Create an inference transform
|
41 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
42 |
|
43 |
image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
|
44 |
(out, _) = infer_image(net, image, transform)
|
45 |
+
# out is a NumPy array with shape of (1, 550), representing class probabilities.
|
46 |
```
|
47 |
|
48 |
### Image Embeddings
|
|
|
51 |
import birder
|
52 |
from birder.inference.classification import infer_image
|
53 |
|
54 |
+
(net, model_info) = birder.load_pretrained_model("davit_tiny_il-all", inference=True)
|
55 |
|
56 |
# Get the image size the model was trained on
|
57 |
+
size = birder.get_size_from_signature(model_info.signature)
|
58 |
|
59 |
# Create an inference transform
|
60 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
61 |
|
62 |
image = "path/to/image.jpeg" # or a PIL image
|
63 |
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
|
64 |
+
# embedding is a NumPy array with shape of (1, 768)
|
65 |
```
|
66 |
|
67 |
### Detection Feature Map
|
|
|
70 |
from PIL import Image
|
71 |
import birder
|
72 |
|
73 |
+
(net, model_info) = birder.load_pretrained_model("davit_tiny_il-all", inference=True)
|
74 |
|
75 |
# Get the image size the model was trained on
|
76 |
+
size = birder.get_size_from_signature(model_info.signature)
|
77 |
|
78 |
# Create an inference transform
|
79 |
+
transform = birder.classification_transform(size, model_info.rgb_stats)
|
80 |
|
81 |
image = Image.open("path/to/image.jpeg")
|
82 |
features = net.detection_features(transform(image).unsqueeze(0))
|