File size: 4,233 Bytes
1dc4dc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
tags:
- image-classification
- birder
- pytorch
library_name: birder
license: apache-2.0
base_model:
- birder-project/hiera_abswin_base_mim
---
# Model Card for hiera_abswin_base_mim-intermediate-eu-common
A Hiera image classification model. The model follows a three-stage training process: first, masked image modeling, next intermediate training on a large-scale dataset containing diverse bird species from around the world, finally fine-tuned specifically on the `eu-common` dataset.
The species list is derived from the Collins bird guide [^1].
[^1]: Svensson, L., Mullarney, K., & Zetterström, D. (2022). Collins bird guide (3rd ed.). London, England: William Collins.
## Model Details
- **Model Type:** Image classification and detection backbone
- **Model Stats:**
- Params (M): 51.1
- Input image size: 384 x 384
- **Dataset:** eu-common (707 classes)
- Intermediate training involved ~6000 species from asia, europe and africa
- **Papers:**
- Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles: <https://arxiv.org/abs/2306.00989>
- Window Attention is Bugged: How not to Interpolate Position Embeddings: <https://arxiv.org/abs/2311.05613>
## Model Usage
### Image Classification
```python
import birder
from birder.inference.classification import infer_image
(net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim-intermediate-eu-common", inference=True)
# Get the image size the model was trained on
size = birder.get_size_from_signature(model_info.signature)
# Create an inference transform
transform = birder.classification_transform(size, model_info.rgb_stats)
image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format
(out, _) = infer_image(net, image, transform)
# out is a NumPy array with shape of (1, 707), representing class probabilities.
```
### Image Embeddings
```python
import birder
from birder.inference.classification import infer_image
(net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim-intermediate-eu-common", inference=True)
# Get the image size the model was trained on
size = birder.get_size_from_signature(model_info.signature)
# Create an inference transform
transform = birder.classification_transform(size, model_info.rgb_stats)
image = "path/to/image.jpeg" # or a PIL image
(out, embedding) = infer_image(net, image, transform, return_embedding=True)
# embedding is a NumPy array with shape of (1, 768)
```
### Detection Feature Map
```python
from PIL import Image
import birder
(net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim-intermediate-eu-common", inference=True)
# Get the image size the model was trained on
size = birder.get_size_from_signature(model_info.signature)
# Create an inference transform
transform = birder.classification_transform(size, model_info.rgb_stats)
image = Image.open("path/to/image.jpeg")
features = net.detection_features(transform(image).unsqueeze(0))
# features is a dict (stage name -> torch.Tensor)
print([(k, v.size()) for k, v in features.items()])
# Output example:
# [('stage1', torch.Size([1, 96, 96, 96])),
# ('stage2', torch.Size([1, 192, 48, 48])),
# ('stage3', torch.Size([1, 384, 24, 24])),
# ('stage4', torch.Size([1, 768, 12, 12]))]
```
## Citation
```bibtex
@misc{ryali2023hierahierarchicalvisiontransformer,
title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles},
author={Chaitanya Ryali and Yuan-Ting Hu and Daniel Bolya and Chen Wei and Haoqi Fan and Po-Yao Huang and Vaibhav Aggarwal and Arkabandhu Chowdhury and Omid Poursaeed and Judy Hoffman and Jitendra Malik and Yanghao Li and Christoph Feichtenhofer},
year={2023},
eprint={2306.00989},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2306.00989},
}
@misc{bolya2023windowattentionbuggedinterpolate,
title={Window Attention is Bugged: How not to Interpolate Position Embeddings},
author={Daniel Bolya and Chaitanya Ryali and Judy Hoffman and Christoph Feichtenhofer},
year={2023},
eprint={2311.05613},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2311.05613},
}
```
|