--- tags: - image-classification - birder - pytorch library_name: birder license: apache-2.0 base_model: - birder-project/hiera_abswin_base_mim --- # Model Card for hiera_abswin_base_mim-intermediate-eu-common A Hiera image classification model. The model follows a three-stage training process: first, masked image modeling, next intermediate training on a large-scale dataset containing diverse bird species from around the world, finally fine-tuned specifically on the `eu-common` dataset. The species list is derived from the Collins bird guide [^1]. [^1]: Svensson, L., Mullarney, K., & Zetterström, D. (2022). Collins bird guide (3rd ed.). London, England: William Collins. ## Model Details - **Model Type:** Image classification and detection backbone - **Model Stats:** - Params (M): 51.1 - Input image size: 384 x 384 - **Dataset:** eu-common (707 classes) - Intermediate training involved ~6000 species from asia, europe and africa - **Papers:** - Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles: - Window Attention is Bugged: How not to Interpolate Position Embeddings: ## Model Usage ### Image Classification ```python import birder from birder.inference.classification import infer_image (net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim-intermediate-eu-common", inference=True) # Get the image size the model was trained on size = birder.get_size_from_signature(model_info.signature) # Create an inference transform transform = birder.classification_transform(size, model_info.rgb_stats) image = "path/to/image.jpeg" # or a PIL image, must be loaded in RGB format (out, _) = infer_image(net, image, transform) # out is a NumPy array with shape of (1, 707), representing class probabilities. ``` ### Image Embeddings ```python import birder from birder.inference.classification import infer_image (net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim-intermediate-eu-common", inference=True) # Get the image size the model was trained on size = birder.get_size_from_signature(model_info.signature) # Create an inference transform transform = birder.classification_transform(size, model_info.rgb_stats) image = "path/to/image.jpeg" # or a PIL image (out, embedding) = infer_image(net, image, transform, return_embedding=True) # embedding is a NumPy array with shape of (1, 768) ``` ### Detection Feature Map ```python from PIL import Image import birder (net, model_info) = birder.load_pretrained_model("hiera_abswin_base_mim-intermediate-eu-common", inference=True) # Get the image size the model was trained on size = birder.get_size_from_signature(model_info.signature) # Create an inference transform transform = birder.classification_transform(size, model_info.rgb_stats) image = Image.open("path/to/image.jpeg") features = net.detection_features(transform(image).unsqueeze(0)) # features is a dict (stage name -> torch.Tensor) print([(k, v.size()) for k, v in features.items()]) # Output example: # [('stage1', torch.Size([1, 96, 96, 96])), # ('stage2', torch.Size([1, 192, 48, 48])), # ('stage3', torch.Size([1, 384, 24, 24])), # ('stage4', torch.Size([1, 768, 12, 12]))] ``` ## Citation ```bibtex @misc{ryali2023hierahierarchicalvisiontransformer, title={Hiera: A Hierarchical Vision Transformer without the Bells-and-Whistles}, author={Chaitanya Ryali and Yuan-Ting Hu and Daniel Bolya and Chen Wei and Haoqi Fan and Po-Yao Huang and Vaibhav Aggarwal and Arkabandhu Chowdhury and Omid Poursaeed and Judy Hoffman and Jitendra Malik and Yanghao Li and Christoph Feichtenhofer}, year={2023}, eprint={2306.00989}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2306.00989}, } @misc{bolya2023windowattentionbuggedinterpolate, title={Window Attention is Bugged: How not to Interpolate Position Embeddings}, author={Daniel Bolya and Chaitanya Ryali and Judy Hoffman and Christoph Feichtenhofer}, year={2023}, eprint={2311.05613}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2311.05613}, } ```