Image Feature Extraction
Birder
PyTorch
hassonofer commited on
Commit
9c28406
·
verified ·
1 Parent(s): 086f735

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -3
README.md CHANGED
@@ -1,3 +1,108 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-feature-extraction
4
+ - birder
5
+ - pytorch
6
+ library_name: birder
7
+ license: apache-2.0
8
+ ---
9
+
10
+ # Model Card for vit_reg4_m16_rms_avg_i-jepa
11
+
12
+ A ViT m16 RMS norm image encoder pre-trained using I-JEPA. This model has *not* been fine-tuned for a specific classification task and is intended to be used as a general-purpose feature extractor or a backbone for downstream tasks like object detection, segmentation, or custom classification.
13
+
14
+ ## Model Details
15
+
16
+ - **Model Type:** Image classification and detection backbone
17
+ - **Model Stats:**
18
+ - Params (M): 38.3
19
+ - Input image size: 224 x 224
20
+ - **Dataset:** Trained on a diverse dataset of approximately 13.5M images (12M before sampling), including:
21
+ - iNaturalist 2021 (~2.6M) x1
22
+ - imagenet-1k-webp (~1.3M) x2
23
+ - COCO (~120K) x2
24
+ - VOC 2012 (~17K) x2
25
+ - CUB-200 2011 (~6K) x4
26
+ - The Birder dataset (~8M, private dataset) x1
27
+
28
+ - **Papers:**
29
+ - An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: <https://arxiv.org/abs/2010.11929>
30
+ - Vision Transformers Need Registers: <https://arxiv.org/abs/2309.16588>
31
+ - Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture: <https://arxiv.org/abs/2301.08243>
32
+
33
+ ## Model Usage
34
+
35
+ ### Image Embeddings
36
+
37
+ ```python
38
+ import birder
39
+ from birder.inference.classification import infer_image
40
+
41
+ (net, model_info) = birder.load_pretrained_model("vit_reg4_m16_rms_avg_i-jepa", inference=True)
42
+
43
+ # Get the image size the model was trained on
44
+ size = birder.get_size_from_signature(model_info.signature)
45
+
46
+ # Create an inference transform
47
+ transform = birder.classification_transform(size, model_info.rgb_stats)
48
+
49
+ image = "path/to/image.jpeg" # or a PIL image
50
+ (out, embedding) = infer_image(net, image, transform, return_embedding=True)
51
+ # embedding is a NumPy array with shape of (1, 512)
52
+ ```
53
+
54
+ ### Detection Feature Map
55
+
56
+ ```python
57
+ from PIL import Image
58
+ import birder
59
+
60
+ (net, model_info) = birder.load_pretrained_model("vit_reg4_m16_rms_avg_i-jepa", inference=True)
61
+
62
+ # Get the image size the model was trained on
63
+ size = birder.get_size_from_signature(model_info.signature)
64
+
65
+ # Create an inference transform
66
+ transform = birder.classification_transform(size, model_info.rgb_stats)
67
+
68
+ image = Image.open("path/to/image.jpeg")
69
+ features = net.detection_features(transform(image).unsqueeze(0))
70
+ # features is a dict (stage name -> torch.Tensor)
71
+ print([(k, v.size()) for k, v in features.items()])
72
+ # Output example:
73
+ # [('neck', torch.Size([1, 512, 14, 14]))]
74
+ ```
75
+
76
+ ## Citation
77
+
78
+ ```bibtex
79
+ @misc{dosovitskiy2021imageworth16x16words,
80
+ title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
81
+ author={Alexey Dosovitskiy and Lucas Beyer and Alexander Kolesnikov and Dirk Weissenborn and Xiaohua Zhai and Thomas Unterthiner and Mostafa Dehghani and Matthias Minderer and Georg Heigold and Sylvain Gelly and Jakob Uszkoreit and Neil Houlsby},
82
+ year={2021},
83
+ eprint={2010.11929},
84
+ archivePrefix={arXiv},
85
+ primaryClass={cs.CV},
86
+ url={https://arxiv.org/abs/2010.11929},
87
+ }
88
+
89
+ @misc{darcet2024visiontransformersneedregisters,
90
+ title={Vision Transformers Need Registers},
91
+ author={Timothée Darcet and Maxime Oquab and Julien Mairal and Piotr Bojanowski},
92
+ year={2024},
93
+ eprint={2309.16588},
94
+ archivePrefix={arXiv},
95
+ primaryClass={cs.CV},
96
+ url={https://arxiv.org/abs/2309.16588},
97
+ }
98
+
99
+ @misc{assran2023selfsupervisedlearningimagesjointembedding,
100
+ title={Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture},
101
+ author={Mahmoud Assran and Quentin Duval and Ishan Misra and Piotr Bojanowski and Pascal Vincent and Michael Rabbat and Yann LeCun and Nicolas Ballas},
102
+ year={2023},
103
+ eprint={2301.08243},
104
+ archivePrefix={arXiv},
105
+ primaryClass={cs.CV},
106
+ url={https://arxiv.org/abs/2301.08243},
107
+ }
108
+ ```