blancsw commited on
Commit
df07b9f
·
verified ·
1 Parent(s): 77afc3e

Upload handler.py

Browse files
Files changed (1) hide show
  1. handler.py +36 -0
handler.py ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+
3
+ import torch
4
+ from transformers import pipeline, XLMRobertaTokenizerFast, XLMRobertaForSequenceClassification
5
+
6
+
7
+ class EndpointHandler:
8
+ def __init__(self, path=""):
9
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
+ # load the optimized model
11
+ model = XLMRobertaForSequenceClassification.from_pretrained(path)
12
+ tokenizer = XLMRobertaTokenizerFast.from_pretrained(path)
13
+ model.eval()
14
+ # create inference pipeline
15
+ self.pipline = pipeline("text-classification", tokenizer=tokenizer, model=model, device=self.device)
16
+
17
+ def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
18
+ """
19
+ Args:
20
+ data (:obj:):
21
+ includes the input data and the parameters for the inference.
22
+ Return:
23
+ A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing :
24
+ - "label": A string representing what the label/class is. There can be multiple labels.
25
+ - "score": A score between 0 and 1 describing how confident the model is for this label/class.
26
+ """
27
+ inputs = data.pop("inputs", data)
28
+ parameters = data.pop("parameters", None)
29
+
30
+ # pass inputs with all kwargs in data
31
+ if parameters is not None:
32
+ prediction = self.pipline(inputs, **parameters)
33
+ else:
34
+ prediction = self.pipline(inputs)
35
+ # postprocess the prediction
36
+ return prediction