Llama-3.1-Nemotron-Nano-8B-v1-bnb-4bit

Community Article Published March 24, 2025

Llama-3.1-Nemotron-Nano-8B-v1 to bnb 4bit

tobit4

Use System Ubuntu 22.04

install Software

pip transformers bitsandbytes accelerate

to bnb 4bit

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
import bitsandbytes as bnb

# Define the model name and path
model_name = "nvidia/Llama-3.1-Nemotron-Nano-8B-v1"

# Configure quantization parameters
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,                  # Load the model weights in 4-bit precision
    bnb_4bit_compute_dtype=torch.bfloat16,  # Use bfloat16 for computation
    bnb_4bit_quant_type="nf4",         # Use "nf4" quantization type
    bnb_4bit_use_double_quant=True,    # Enable double quantization
    llm_int8_skip_modules=[             # Specify modules to skip during quantization
        "lm_head",
        "multi_modal_projector",
        "merger",
        "modality_projection",
        "model.layers.1.mlp"
    ],
)

# Load the pre-trained model with the specified quantization configuration
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=quantization_config,
    device_map="auto"  # Automatically allocate devices
)

# Load the tokenizer associated with the model
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Save the quantized model and tokenizer to a specified directory
model.save_pretrained("Llama-3.1-Nemotron-Nano-8B-v1-bnb-4bit")
tokenizer.save_pretrained("Llama-3.1-Nemotron-Nano-8B-v1-bnb-4bit")

Chat Test

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch

# Configure quantization parameters
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,                  # Load the model weights in 4-bit precision
    bnb_4bit_compute_dtype=torch.bfloat16,  # Use bfloat16 for computation
    bnb_4bit_quant_type="nf4",         # Use "nf4" quantization type
    bnb_4bit_use_double_quant=True,    # Enable double quantization
)

# Define the model name and path for the quantized model
model_name = "./Llama-3.1-Nemotron-Nano-8B-v1-bnb-4bit"

# Load the quantized model with the specified configuration
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=quantization_config,
    device_map="auto"  # Automatically allocate devices
)

# Load the tokenizer associated with the model
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Determine the device where the model is located
device = model.device

# Prepare input text and move it to the same device as the model
input_text = "Once upon a time"
inputs = tokenizer(input_text, return_tensors="pt").to(device)

# Perform inference
with torch.no_grad():
    outputs = model.generate(**inputs, max_length=50)

# Decode the generated text
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)

bit4 model

Llama-3.1-Nemotron-Nano-8B-v1-bnb-4bit

Community

Your need to confirm your account before you can post a new comment.

Sign up or log in to comment