omgbobbyg commited on
Commit
f3f9dd8
·
verified ·
1 Parent(s): bf23a58

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +188 -0
README.md ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - computer-vision
6
+ - object-detection
7
+ - yolov8
8
+ - satellite-imagery
9
+ - remote-sensing
10
+ - vhr-10
11
+ - geospatial
12
+ - equipment-detection
13
+ datasets:
14
+ - VHR-10
15
+ pipeline_tag: object-detection
16
+ ---
17
+
18
+ # YOLOv8n Fine-tuned on VHR-10 Remote Sensing Dataset
19
+
20
+ This model is a fine-tuned YOLOv8n (nano) model trained on the NWPU VHR-10 (Very High Resolution) remote sensing dataset for detecting ground equipment and vehicles in satellite imagery.
21
+
22
+ ## Model Description
23
+
24
+ This model demonstrates the feasibility of using YOLOv8 for detecting various pieces of ground equipment through satellite imagery, serving as a proof-of-concept for commercial applications in competitive intelligence, fleet monitoring, and automated equipment detection.
25
+
26
+ ### Model Details
27
+
28
+ - **Model Type**: YOLOv8n (nano) - Object Detection
29
+ - **Training Dataset**: NWPU VHR-10 Remote Sensing Dataset
30
+ - **Model Size**: ~6MB (3M parameters)
31
+ - **Input Resolution**: 640x640 pixels
32
+ - **Training Duration**: 50 epochs
33
+ - **Framework**: Ultralytics YOLOv8
34
+
35
+ ### Detected Classes
36
+
37
+ The model can detect 10 classes of objects commonly found in satellite imagery:
38
+
39
+ 1. **airplane** - Aircraft on airfields and airports
40
+ 2. **ship** - Naval vessels and boats
41
+ 3. **storage_tank** - Industrial storage tanks
42
+ 4. **baseball_diamond** - Baseball fields and diamonds
43
+ 5. **tennis_court** - Tennis courts and facilities
44
+ 6. **basketball_court** - Basketball courts
45
+ 7. **ground_track_field** - Athletic tracks and fields
46
+ 8. **harbor** - Harbor facilities and ports
47
+ 9. **bridge** - Bridges and overpasses
48
+ 10. **vehicle** - Ground vehicles and equipment
49
+
50
+ ## Performance Metrics
51
+
52
+ ### Overall Performance
53
+ - **[email protected]**: 98.0% (exceptional)
54
+ - **[email protected]:0.95**: 68.2% (good across IoU thresholds)
55
+ - **Overall Precision**: 94.1%
56
+ - **Overall Recall**: 96.5%
57
+ - **Inference Speed**: 9.9ms per image
58
+
59
+ ### Vehicle Detection Performance (Primary Focus)
60
+ - **Vehicle F1 Score**: 79.2%
61
+ - **Vehicle Precision**: 87.5%
62
+ - **Vehicle Recall**: 81.5%
63
+ - **Vehicle [email protected]**: 88.8%
64
+
65
+ ### Class-wise Performance (F1 Scores)
66
+ 1. Ground Track Field: 100.0%
67
+ 2. Airplane: 98.0%
68
+ 3. Ship: 95.8%
69
+ 4. Baseball Diamond: 94.3%
70
+ 5. Tennis Court: 91.7%
71
+ 6. Basketball Court: 90.9%
72
+ 7. Bridge: 87.0%
73
+ 8. Storage Tank: 84.2%
74
+ 9. Harbor: 81.8%
75
+ 10. Vehicle: 79.2%
76
+
77
+ ## Intended Use
78
+
79
+ ### Primary Applications
80
+ - **Proof-of-concept** for satellite-based equipment detection
81
+ - **Competitive intelligence** and market analysis
82
+ - **Fleet monitoring** and logistics optimization
83
+ - **Infrastructure inventory** management
84
+ - **Automated lead generation** based on equipment detection
85
+
86
+ ### Commercial Potential
87
+ This model demonstrates that AI can reliably detect vehicles and equipment in satellite imagery, laying the groundwork for specialized commercial applications such as:
88
+ - Hostler detection for logistics companies
89
+ - Construction equipment monitoring
90
+ - Fleet tracking and analysis
91
+ - Market research and competitive analysis
92
+
93
+ ## Usage
94
+
95
+ ### Loading the Model
96
+
97
+ ```python
98
+ from ultralytics import YOLO
99
+
100
+ # Load the model
101
+ model = YOLO('best.pt')
102
+
103
+ # Run inference
104
+ results = model('satellite_image.jpg')
105
+
106
+ # Process results
107
+ for result in results:
108
+ boxes = result.boxes
109
+ for box in boxes:
110
+ class_id = int(box.cls)
111
+ confidence = float(box.conf)
112
+ print(f"Detected: {model.names[class_id]} (confidence: {confidence:.3f})")
113
+ ```
114
+
115
+ ### HuggingFace Usage
116
+
117
+ ```python
118
+ from huggingface_hub import hf_hub_download
119
+ from ultralytics import YOLO
120
+
121
+ # Download model from HuggingFace
122
+ model_path = hf_hub_download(
123
+ repo_id="omgbobbyg/satellite-equipment-detection-yolov8n-vhr10",
124
+ filename="best.pt"
125
+ )
126
+
127
+ # Load and use model
128
+ model = YOLO(model_path)
129
+ results = model('your_satellite_image.jpg')
130
+ ```
131
+
132
+ ## Training Details
133
+
134
+ ### Dataset
135
+ - **NWPU VHR-10 Dataset**: 800 very high-resolution remote sensing images
136
+ - **Training Split**: 70% (559 images)
137
+ - **Validation Split**: 20% (160 images)
138
+ - **Test Split**: 10% (81 images)
139
+ - **Image Sources**: Google Earth and Vaihingen dataset
140
+
141
+ ### Training Configuration
142
+ - **Model**: YOLOv8n (nano)
143
+ - **Epochs**: 50
144
+ - **Batch Size**: 8 (memory optimized)
145
+ - **Image Size**: 640x640
146
+ - **Optimizer**: AdamW (auto-selected)
147
+ - **Learning Rate**: 0.000714 (auto-selected)
148
+ - **GPU**: NVIDIA RTX 4090
149
+
150
+ ## Limitations and Considerations
151
+
152
+ ### Strengths
153
+ - Excellent overall detection performance (98% [email protected])
154
+ - High recall rate ensures minimal missed detections
155
+ - Fast inference suitable for real-time applications
156
+ - Good generalization across different object types
157
+
158
+ ### Limitations
159
+ - Vehicle detection shows 49% over-prediction rate (false positives)
160
+ - Performance varies with object size and complexity
161
+ - Generic model - specialized training could significantly improve accuracy
162
+ - Limited to 10 predefined classes
163
+
164
+ ### Recommendations for Production Use
165
+ - Implement post-processing filtering for specific use cases
166
+ - Consider ensemble methods for higher accuracy
167
+ - Use larger YOLOv8 variants (s/m/l) for better precision
168
+ - Develop specialized models for specific equipment types
169
+
170
+ ## Citation
171
+
172
+ If you use this model in your research, please cite the original VHR-10 dataset:
173
+
174
+ ```bibtex
175
+ @article{cheng2014multi,
176
+ title={Multi-class geospatial object detection and geographic image classification based on collection of part detectors},
177
+ author={Cheng, Gong and Han, Junwei and Zhou, Peicheng and Guo, Lei},
178
+ journal={ISPRS Journal of Photogrammetry and Remote Sensing},
179
+ volume={98},
180
+ pages={119--132},
181
+ year={2014},
182
+ publisher={Elsevier}
183
+ }
184
+ ```
185
+
186
+ ## License
187
+
188
+ This model is released under the MIT License. The underlying YOLOv8 framework is licensed under GPL-3.0.