File size: 1,749 Bytes
2811a66
46efe69
2811a66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c1c58c
2811a66
d739829
 
 
 
 
 
2811a66
 
d739829
2811a66
 
d739829
 
 
2811a66
 
d739829
2811a66
 
d739829
 
 
2811a66
 
 
d739829
2811a66
 
d739829
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# ############################################################################
# Model: WAV2VEC XLSR model for Accent Recognition (English)
# see paper: https://arxiv.org/abs/2305.18283
# ############################################################################

# Hparams NEEDED
HPARAMS_NEEDED: ["encoder_dim", "out_n_neurons", "label_encoder", "softmax"]
# Modules Needed
MODULES_NEEDED: ["wav2vec2", "avg_pool", "output_mlp"]

# Feature parameters
# wav2vec2_hub: facebook/wav2vec2-base
wav2vec2_hub: "facebook/wav2vec2-large-xlsr-53"

# Pretrain folder (HuggingFace)
pretrained_path: Jzuluaga/accent-id-commonaccent_xlsr-en-english
# URL for the biggest Fairseq english wav2vec2 model.

# parameters
encoder_dim: 1024
out_n_neurons: 16

wav2vec2:
  !new:speechbrain.lobes.models.huggingface_transformers.wav2vec2.Wav2Vec2
  source: !ref <wav2vec2_hub>
  output_norm: True
  freeze: True
  save_path: wav2vec2_checkpoints

avg_pool: !new:speechbrain.nnet.pooling.StatisticsPooling
  return_std: False

output_mlp: !new:speechbrain.nnet.linear.Linear
  input_size: !ref <encoder_dim>
  n_neurons: !ref <out_n_neurons>
  bias: False

model: !new:torch.nn.ModuleList
  - [!ref <output_mlp>]

modules:
  wav2vec2: !ref <wav2vec2>
  output_mlp: !ref <output_mlp>
  avg_pool: !ref <avg_pool>

softmax: !new:speechbrain.nnet.activations.Softmax

label_encoder: !new:speechbrain.dataio.encoder.CategoricalEncoder

pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
  loadables:
    wav2vec2: !ref <wav2vec2>
    model: !ref <model>
    label_encoder: !ref <label_encoder>
  paths:
    wav2vec2: !ref <pretrained_path>/wav2vec2.ckpt
    model: !ref <pretrained_path>/model.ckpt
    label_encoder: !ref <pretrained_path>/label_encoder.txt